1
|
Zhou C, Sun M, Zhang P, Yuan Y, Peng J, Zhang H, He C, Yao G, Liu Y, Zhou P, Lai B. Spatial confinement Fenton oxidation realized via tunable nanopore structure of porous carbon. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134979. [PMID: 38905982 DOI: 10.1016/j.jhazmat.2024.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Spatially confined structure exhibits surprising physics and chemistry properties that significantly impact the thermodynamics and kinetics of oxidation reactions. Herein, porous carbons are rationally designed for tunable nanopore structures (micropores, 4.12 % ∼ 91.64 %) and diverse spatial confinement ability, as indicated by their differential enhancement performances in the Fenton oxidation. Porous carbons can alter the characteristics of the charge transport process for accelerating sustainable electron shuttle between hydrogen peroxide and iron species, and thus exhibit long-term performance (17 cycling tests). The positive spatial confinement for boosting Fenton oxidation (charge transport, mass transfer) occurs in nanochannels < 1 nm, while the diminished effect ranges of 1-1.5 nm, and the adverse effect ranges greater than 1.5 nm. The density functional theory calculation provides further support for certifying the promoted charge transport process and spatial confinement for hydroxyl radical inside the confined nanochannel structure (below 1 nm, especially) by the comparatively large electron cloud and the relatively negative adsorption energy, respectively. Coupling nanochannels with the Fenton oxidation greatly utilize hydrogen peroxide, due to spatial nanoconfinement and selective adsorption towards target contaminants. This strategy of deploying nanochannels in catalyst design can be applied for the elaborate construction of efficient nanostructured catalysts for environmental remediation.
Collapse
Affiliation(s)
- Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiali Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China; Sino-German Centre for innovative Environmental Technologies, Aachen 52074, Germany
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Yang G, Wang DY, Song J, Ren Y, An Y, Busscher HJ, van der Mei HC, Shi L. Cetyltrimethylammonium-chloride assisted in situ metabolic incorporation of nano-sized ROS-generating cascade-reaction containers in Gram-positive and Gram-negative peptidoglycan layers for the control of bacterially-induced sepsis. Acta Biomater 2024; 181:347-361. [PMID: 38702010 DOI: 10.1016/j.actbio.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
4
|
Zhu W, Cheng Y, Wang C, Lu X. Fabrication of a Tubular CuO/NiO Biomimetic Nanozyme with Synergistically Promoted Peroxidase-like Performance for Isoniazid Sensing. Inorg Chem 2022; 61:16239-16247. [PMID: 36179151 DOI: 10.1021/acs.inorgchem.2c01896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isoniazid is an antibiotic primarily used in clinical treatment of tuberculosis, but excessive usage can lead to serious consequences such as hepatotoxicity, neurotoxicity, and even coma and death. Therefore, it is critical to exploit a quick, facile, and acute way for isoniazid analysis. In this work, we have demonstrated an efficient electrospinning-carbonation-wet chemistry reaction-calcination process to fabricate CuO/NiO nanotubes (NTs) as a promising nanozyme for peroxidase (POD) mimicking. In virtue of the distinct tubular structure and synergy between CuO and NiO from the mechanisms of both electron transfer and hydroxyl radical generation, a remarkably improved catalytic activity is realized for the CuO/NiO NTs compared with bare CuO and NiO samples. According to the admirable POD-like property, a rapid colorimetric detection for isoniazid is accomplished with a detection limit of 0.4 μM (S/N = 3) and favorable selectivity. In addition, the sensing capability of isoniazid in a real sample is also investigated with satisfactory results. This work offers a novel tactic to fabricate high-performance nanozymes with efficient isoniazid sensing capabilities to address challenges in disease treatment efficacy and public safety monitoring.
Collapse
Affiliation(s)
- Wendong Zhu
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Ya Cheng
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Ce Wang
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| | - Xiaofeng Lu
- College of Chemistry, Jilin University Alan G. MacDiarmid Institute, 2699 Qianjin Street, Gaoxin District, Changchun 130012, P.R. China
| |
Collapse
|
5
|
Ji X, Lu Q, Sun X, Zhao L, Zhang Y, Yao J, Zhang X, Zhao H. Dual-Active Au@PNIPAm Nanozymes for Glucose Detection and Intracellular H 2O 2 Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8077-8086. [PMID: 35730995 DOI: 10.1021/acs.langmuir.2c00911] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a nanozyme, gold nanoparticles have some advantages compared with natural enzymes, such as stable structure, adjustable catalytic activity, multifunctionality, and recyclability. Due to their special dimension, they are easy to aggregate rapidly and lose their catalytic performance when exposed to normal saline or special pH environment. To avoid such a situation, Au@PNIPAm nanozymes with core-shell structure are constructed and their mimic peroxidase and glucose oxidase enzymatic activities are investigated. Kinetic examinations manifest that Au@PNIPAm nanozymes exhibited a high affinity for 3,3,5,5-tetramethylbenzidine (TMB), hydrogen peroxide (H2O2), and glucose. These predominant peroxidase-like and glucose-like oxidase Au@PNIPAm catalytic activities are successfully used in the detection of H2O2 or glucose (LOD is 2.43 mM or 5.07 mM). Otherwise, the potential Au@PNIPAm nanozymes are provided with a clear ability for decomposing the intracellular H2O2 in living cells. And it could protect cells from oxidative stress damage with inducing by H2O2. Therefore, it is easy to consider that Au@PNIPAm nanozymes show a certain possibility to retard cell senescence and increase the production of the hydroxyl radical which could prevent carcinogenesis of the cell.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xuhao Sun
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Liyun Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Yuhan Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Hui Zhao
- China School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Jia Y, Zhao S, Qu Q, Yang L. Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence. Biosens Bioelectron 2022; 202:114020. [DOI: 10.1016/j.bios.2022.114020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023]
|
7
|
Gao S, Pang H, Zhao Y, Dai Y, Hong P, Liao B. Tadpole‐like Copolymer for Fabrication of Silica‐encapsulated Polysulfide Microspheres. ChemistrySelect 2021. [DOI: 10.1002/slct.202102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuxi Gao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Hao Pang
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Yifang Zhao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Yongqiang Dai
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - PeiPing Hong
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| | - Bing Liao
- Guangdong Key Laboratory of Industrial Surfactant Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510665 China
| |
Collapse
|
8
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|