1
|
Armstrong T, Schmid J, Niemelä JP, Utke I, Schutzius TM. Nanostructured Surfaces Enhance Nucleation Rate of Calcium Carbonate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402690. [PMID: 39165055 DOI: 10.1002/smll.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Nucleation and growth of calcium carbonate on surfaces is of broad importance in nature and technology, being essential to the calcification of organisms, while negatively impacting energy conversion through crystallization fouling, also called scale formation. Previous work studied how confinements, surface energies, and functionalizations affect nucleation and polymorph formation, with surface-water interactions and ion mobility playing important roles. However, the influence of surface nanostructures with nanocurvature-through pit and bump morphologies-on scale formation is unknown, limiting the development of scalephobic surfaces. Here, it is shown that nanoengineered surfaces enhance the nucleation rate by orders of magnitude, despite expected inhibition through effects like induced lattice strain through surface nanocurvature. Interfacial and holographic microscopy is used to quantify crystallite growth and find that nanoengineered interfaces experience slower individual growth rates while collectively the surface has 18% more deposited mass. Reconstructions through nanoscale cross-section imaging of surfaces coupled with classical nucleation theory-utilizing local nanocurvature effects-show the collective enhancement of nano-pits.
Collapse
Affiliation(s)
- Tobias Armstrong
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland
| | - Julian Schmid
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland
| | - Janne-Petteri Niemelä
- Laboratory for Mechanics of Materials and Nanostructures, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, CH-3602, Switzerland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, Thun, CH-3602, Switzerland
| | - Thomas M Schutzius
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Schmid J, Armstrong T, Dickhardt FJ, Iqbal SKR, Schutzius TM. Imparting scalephobicity with rational microtexturing of soft materials. SCIENCE ADVANCES 2023; 9:eadj0324. [PMID: 38117897 PMCID: PMC10732533 DOI: 10.1126/sciadv.adj0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Crystallization fouling, a process where scale forms on surfaces, is widespread in nature and technology, negatively affecting energy and water industries. Despite the effort, rationally designed surfaces that are intrinsically resistant to it remain elusive, due in part to a lack of understanding of how microfoulants deposit and adhere in dynamic aqueous environments. Here, we show that rational tuning of coating compliance and wettability works synergistically with microtexture to enhance microfoulant repellency, characterized by low adhesion and high removal efficiency of numerous individual microparticles and tenacious crystallites in a flowing water environment. We study the microfoulant interfacial dynamics in situ using a micro-scanning fluid dynamic gauge system, elucidate the removal mechanisms, and rationalize the behavior with a shear adhesive moment model. We then demonstrate a rationally developed coating that can remove 98% of deposits under shear flow conditions, 66% better than rigid substrates.
Collapse
Affiliation(s)
- Julian Schmid
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Tobias Armstrong
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Fabian J. Dickhardt
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - SK Rameez Iqbal
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Thomas M. Schutzius
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zang R, Wang Y, Meng J, Chen W, Wang B, Xu X, He X, Yang H, Li K, Wang S. Sustainable scale resistance on a bioinspired synergistic microspine coating with a collectible liquid barrier. MATERIALS HORIZONS 2022; 9:2872-2880. [PMID: 36093614 DOI: 10.1039/d2mh00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scale deposition, especially in the petroleum industry, has always been a serious issue because of its potential safety hazards and huge economic cost. However, conventional scale-resistant strategies based on mechanical descaling and chemical detergents can't feed the urgent demand for energy saving and environmental protection. Herein, we report a bioinspired long-term oil collectible mask (BLOCK)-a microspine coating with the synergistic effect of anti-adhesion and oil collection, displaying sustainable scale resistance towards oilfield-produced water. Inspired by pitcher plants, the oil layer as a liquid barrier inhibits scale deposition by changing the underwater scaling micro-environment from liquid/solid/solid to a liquid/solid/liquid triphase system. Oil droplets are collected by cacti-inspired microspines to enhance oil layer stability. Compared with stainless steel, the BLOCK coating shows ca. 98% reduction even after 35 days in artificial produced water. This strategy could be utilized to design integrated functional materials for conquering complex environments such as oil recovery and transportation.
Collapse
Affiliation(s)
- Ruhua Zang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yixuan Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Binzhou 256600, P. R. China
| | - Wei Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuetao Xu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kan Li
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Luo Y, Tan S, Luo Z, Li J, Zhu Z, Jia B, Liu Z. Grass‐to‐stone surface inspired long‐term inhibiting scaling. NANO SELECT 2022. [DOI: 10.1002/nano.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yimin Luo
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Sheng Tan
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zhuangzhu Luo
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Jingbo Li
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zewei Zhu
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Baoguang Jia
- School of Materials Sun Yat‐sen University Shenzhen China
| | - Zhipeng Liu
- School of Materials Sun Yat‐sen University Shenzhen China
| |
Collapse
|