1
|
Günther T, Hedbom D, Åhlén M, Yoshino H, Miyasaka H, Kasai H, Oka K, Emanuelsson R. Unlocking the Charge-Storage Potential of a Phenanthraquinone-based Two-Dimensional Covalent Organic Framework (2D COF). Chempluschem 2024; 89:e202400184. [PMID: 38837329 DOI: 10.1002/cplu.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
The high surface area, open pore-structure and atomic-level organization inherent in many covalent organic frameworks (COFs) make them an attractive polymer platform for developing functional materials. Herein, a chemically robust 2D COF (TpOMe-DAPQ COF) containing phenanthraquinone moieties was prepared by condensing 2,4,6-trimethoxy-1,3,5-benzenetricarbaldehyde (TpOMe) and 2,7-diamino-9,10-phenanthraquinone (DAPQ) using the convenient mechanochemical method. The poor charge-storage capacity of the pristine TpOMe-DAPQ COF was substantially improved by first investigating its redox-site accessibility (RSA) using different conductivity-enhancement methods, and then optimizing the amount of EDOT needed to perform an in-situ polymerization. The resulting composite (0.4EDOT@TpOMe-DAPQ) was characterized and its enhanced charge-storage capabilities enabled it to be used as an anode material in an aqueous Mn beaker-cell battery capable of delivering 0.76 V. This work outlines the rational design approach used to develop a functional charge-storage material utilizing a COF-based polymerization platform.
Collapse
Affiliation(s)
- Tyran Günther
- Department of Materials Science and Engineering - Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Daniel Hedbom
- Department of Materials Science and Engineering - Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Michelle Åhlén
- Department of Materials Science and Engineering - Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Haruka Yoshino
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Miyagi, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Miyagi, Japan
| | - Hitoshi Kasai
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Miyagi, Japan
| | - Kouki Oka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Miyagi, Japan
| | - Rikard Emanuelsson
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| |
Collapse
|
2
|
Guo W, Liu J, Tao H, Meng J, Yang J, Shuai Q, Asakura Y, Huang L, Yamauchi Y. Covalent Organic Framework Nanoarchitectonics: Recent Advances for Precious Metal Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405399. [PMID: 38896104 DOI: 10.1002/adma.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The recovery of precious metals (PMs) from secondary resources has garnered significant attention due to environmental and economic considerations. Covalent organic frameworks (COFs) have emerged as promising adsorbents for this purpose, owing to their tunable pore size, facile functionalization, exceptional chemical stability, and large specific surface area. This review provides an overview of the latest research progress in utilizing COFs to recover PMs. Firstly, the design and synthesis strategies of chemically stable COF-based materials, including pristine COFs, functionalized COFs, and COF-based composites, are delineated. Furthermore, the application of COFs in the recovery of gold, silver, and platinum group elements is delved into, emphasizing their high adsorption capacity and selectivity as well as recycling ability. Additionally, various interaction mechanisms between COFs and PM ions are analyzed. Finally, the current challenges faced by COFs in the field of PM recovery are discussed, and potential directions for future development are proposed, including enhancing the recyclability and reusability of COF materials and realizing the high recovery of PMs from actual acidic wastewater. With the targeted development of COF-based materials, the recovery of PMs can be realized more economically and efficiently in the future.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jiale Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Juan Yang
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone, Wuhan, Hubei Province, 430205, P. R. China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
3
|
Wang Q, Li M, Xi M, Zhao M, Wang X, Chen X, Ding L. Recovery of Ag(I) from Wastewater by Adsorption: Status and Challenges. TOXICS 2024; 12:351. [PMID: 38787130 PMCID: PMC11125793 DOI: 10.3390/toxics12050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Untreated or inadequately treated silver-containing wastewater may pose adverse effects on hu-man health and the ecological environment. Currently, significant progress has been made in the treatment of Ag(I) in wastewater using adsorption methods, with adsorbents playing a pivotal role in this process. This paper provides a systematic review of various adsorbents for the recovery and treatment of Ag(I) in wastewater, including MOFs, COFs, transition metal sulfides, metal oxides, biomass materials, and other polymeric materials. The adsorption mechanisms of these materials for Ag(I) are elaborated upon, along with the challenges currently faced. Furthermore, insights into optimizing adsorbents and developing novel adsorbents are proposed in this study.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng Xi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyuan Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoyu Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
4
|
Li Z, Jiang D, Gong J, Li Y, Fu P, Zhang Y, Du F. N-type silver ammonia-polyethyleneimine/single-walled carbon nanotube composite films with enhanced thermoelectric properties. Phys Chem Chem Phys 2023; 25:29192-29200. [PMID: 37870868 DOI: 10.1039/d3cp03906d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Carbon nanotubes and their composite thermoelectric (TE) materials have significant advantages in supplying power to flexible electronics due to their high electrical conductivity, excellent flexibility, and facile preparation technology. In this work, stable n-type silver ammonia-polyethyleneimine/single-walled carbon nanotube ([Ag(NH3)2]+-PEI/SWCNT) composite films were facilely prepared by solution blending and vacuum-filtration methods. The results demonstrate that light silver ammonia doping optimizes the carrier concentration and carrier mobility of the composite film, and a maximum power factor (PF) of [Ag(NH3)2]+-PEI/SWCNT of 91.9 μW m-1 K-2 was obtained, which is higher than that of PEI/SWCNT (70.0 μW m-1 K-2). Furthermore, when the composite films were reduced by the NaBH4 solution, the Seebeck coefficient and the PF value were further increased to -45.5 μV K-1 and 115.8 μW m-1 K-2, respectively. For demonstration, a maximum output voltage of 13.8 mV and output power of 492 nW were achieved using a three p-n junction-based TE device constructed by [Ag(NH3)2]+-PEI/SWCNT at a temperature difference of 50 K. Thus, this study provides a metal complex ion doping strategy to improve thermoelectrical properties and air stability of the PEI/SWCNT composite films, which have potential applications in flexible electronics.
Collapse
Affiliation(s)
- Zan Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Duo Jiang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jiayan Gong
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yi Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ping Fu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yunfei Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feipeng Du
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 53:1289-1309. [DOI: doi.org/10.1080/10643389.2023.2168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yang Li
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Hui Yang
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, P.R. China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| |
Collapse
|
6
|
[Determination of four fungicides in water by magnetic solid phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry using covalent organic framework material]. Se Pu 2022; 40:988-997. [PMID: 36351807 PMCID: PMC9654951 DOI: 10.3724/sp.j.1123.2022.08023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fungicides can lead to soil and plant diseases after long-term enrichment in the environment; they can also penetrate deeper into the soil and groundwater by rainwater or irrigation, threatening the water environment and human health. Therefore, it is crucial to develop a simple, rapid, efficient, and sensitive analytical method for the detection of fungicides in the water environment. Sample pretreatment is important for the extraction and enrichment of pollutants from environmental water. Magnetic solid phase extraction (MSPE) is a new sample pretreatment method, which uses magnetic materials as adsorbents dispersed in solution, and rapid separation can be achieved by the aid of external magnets. Because of its advantages of short analytical time, less organic solvent consumption, and easy separation of adsorbents, MSPE has attracted much attention. The key to MSPE is the preparation of highly selective magnetic adsorbents. Covalent organic frameworks have the advantages of large surface area, good chemical and thermal stability, tunable porous structure, low density, and easy functionalization, all of which are ideal for adsorbing fungicides. The concentration of fungicides in environmental water is low. Ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) has high sensitivity and high selectivity, which is suitable for the analysis of fungicides. In this work, a magnetic covalent organic framework Fe3O4@TpBD was prepared by an in situ method, as the MSPE sorbent material to enrich of benzimidazole fungicides (thiabendazole, carbendazim, fuberidazole) and organic sulfur fungicide (isoprothiolane) in environmental water. An extraction method based on π-π conjugation, hydrogen bonding, and electrostatic interaction between Fe3O4@TpBD and the fungicides, in combination with UHPLC-MS/MS, was developed for the determination of four trace fungicides in water. Transmission electron microscopy (TEM), X-ray diffractometry (XRD), and Fourier transform-infrared spectroscopy (FT-IR) were performed to confirm the successful synthesis of Fe3O4@TpBD and to characterize this material. A series of experiments were carried out to decide the optimal extraction conditions, i. e., the magnetic ratio and dosage of Fe3O4@TpBD, pH of the water sample, adsorption time, type and volume of the eluent, elution time, and salinity. Gradient elution was carried out with methanol-water as the mobile phase. The target analytes were separated on an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm), and multiple reaction monitoring (MRM) was conducted in the positive electrospray ionization mode. The ion source temperature and ion source voltage were set to 500 ℃ and 5 kV, respectively. The analytical method was established under the optimized extraction conditions. The four fungicides showed good linearity in the range of 3-1200 ng/L, with linear correlation coefficients greater than 0.998. The limits of detection (LODs) and limits of quantification (LOQs) of this developed method were 0.06-0.28 ng/L and 0.20-0.92 ng/L, respectively. Recovery tests were performed at three spiked levels of 15, 150, and 600 ng/L, with relative standard deviations of 2.8% to 10.0% (intra-day) and 4.4% to 15.7% (inter-day). The accuracy of the established analytical method was investigated by using it to test real water samples, and satisfactory recoveries for the four analytes were achieved within 77.1% to 119.1%. Trace amounts of carbendazim were detected in the reservoir water at 27.5 ng/L. The method has good sensitivity, accuracy, and precision, and the operation process is convenient.
Collapse
|
7
|
Rapid and selective recovery of Ag(I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
9
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|
10
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Wang H, He T, Quan D, Wang T, Li C, Shen Y. Thiosemicarbazide‐Linked Covalent Organic Framework: Preparation, Properties and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heping Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tengteng He
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Dandan Quan
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tong Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
12
|
Bagheri AR, Li C, Zhang X, Zhou X, Aramesh N, Zhou H, Jia J. Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomater Sci 2021; 9:5745-5761. [PMID: 34318797 DOI: 10.1039/d1bm00960e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, the number of patients diagnosed with cancer has been soaring. Therefore, the design, development, and implementation of new approaches for the diagnosis and therapy of different types of cancers have attracted an increasing amount of attention. To date, different methods have been used for cancer diagnosis and therapy with main drawbacks in terms of severe side effects, e.g., damage to healthy cells, development of drug resistance and tumor recurrence. Therefore, there is an urgent need for the introduction and application of innovative methods. Covalent organic frameworks (COFs) are versatile materials with excellent properties in terms of biocompatibility, porous and crystalline structure, and easy functionalization. The porous structure and organic monomers in COFs allow them to load different therapeutic drugs and/or functional species efficiently. These promising properties make COFs ideal candidates for medical application, especially in cancer diagnosis and therapy. To date, many studies have focused on the design and synthesis of novel COFs while their application as diagnostic and therapeutic materials remains less understood. In this review, different synthesis and functionalization approaches of COFs were summarized. In particular, cancer diagnosis and therapy based on COFs were investigated and the advantages and limitations of each method were discussed. Most importantly, the mechanism for cancer therapy of COFs and fundamental challenges and perspectives for the application of COFs in cancer theranostics were assessed.
Collapse
Affiliation(s)
- Ahmad Reza Bagheri
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|