1
|
Gierczyk B, Zalas M, Otłowski T. High-Energetic Salts and Metal Complexes: Comprehensive Overview with a Focus on Use in Homemade Explosives (HME). Molecules 2024; 29:5588. [PMID: 39683747 DOI: 10.3390/molecules29235588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Metal-containing compounds form a large and rapidly expanding group of high-energy materials. Many compounds in this class attract the attention of non-professionals, who may attempt the illegal production of explosives. Several of these substances have been commercially available and pose significant danger if used by terrorists or for criminal purposes. Others are experimental compounds, kinds of curiosities, often created by pyrotechnics enthusiasts, which can present serious risks to both the creators and their immediate surroundings. The internet hosts a vast amount of information, including recipes and discussions on forums, private websites, social media, and more. This paper aims to review the variety of metal-containing explosives and discuss their appeal and potential accessibility to unauthorized individuals.
Collapse
Affiliation(s)
- Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Tomasz Otłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Tan B, Dou J, Yang X, Li W, Zhang J, Zhang P, Mo H, Lu X, Wang B, Liu N. Application and prospects of EMOFs in the fields of explosives and propellants. Dalton Trans 2024. [PMID: 38980718 DOI: 10.1039/d4dt01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Energetic Metal-Organic Framework (EMOF) compounds have gained significant attention in recent years as a hot research topic in the fields of explosives and propellants. This article provides an overview of the latest research progress of EMOFs in various areas, including heat-resistant explosives, burning rate catalysts and initiating explosives. It discusses the recent development trends of high-energy EMOFs, such as high-dimensional and solvent-free structural design, simplified and scalable synthesis conditions, environmentally friendly manufacturing processes with tunable structures, high-energy, low-sensitivity and multifunctional target products. The challenges and issues faced by EMOFs in heat-resistant explosives, burning rate catalysts and initiating explosives are presented. Furthermore, the key research directions for future applications of EMOFs in the fields of explosives and propellants are discussed, including solvent-free high-dimensional EMOFs design and synthesis, precise modulation of EMOFs molecular composition and pore structure, improvement of accurate prediction methods for physicochemical properties of high-energy EMOFs, low-cost large-scale production and development of multifunctional composite EMOFs as energetic materials, exploration of influencing factors, and comprehensive study on the application of novel and high-performance multifunctional EMOFs.
Collapse
Affiliation(s)
- Bojun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Jinkang Dou
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Xiong Yang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Wenjie Li
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Jing Zhang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Pengfeng Zhang
- YulinUniversiy, School Chemistry and Chemical Eneinerine, Yuin, 719000, China
| | - Hongchang Mo
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Xinming Lu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Bozhou Wang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Ning Liu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
3
|
Wang Z, Lai Q, Yin P, Pang S. Construction of Adaptive Deformation Block: Rational Molecular Editing of the N-Rich Host Molecule to Remove Water from the Energetic Hydrogen-Bonded Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21849-21856. [PMID: 38651518 DOI: 10.1021/acsami.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Energetic hydrogen-bonded organic frameworks (E-HOFs), as a type of energetic material, spark fresh vitality to the creation of high energy density materials (HEDMs). However, E-HOFs containing cations and anions face challenges such as reduced energy density due to the inclusion of crystal water. In this work, the modification of amino groups in N-rich organic units could form a smart building block of hydrogen-bonded frameworks capable of changing the volume of the void space in the molecule through adaptive deformation of E-MOF blocks, thus enabling the replacement of water. Based on the above strategy, we report an interesting example of a series of hydrogen-bonded organic frameworks (E-HOF 2a and 3a) synthesized using a facile method. The crystal structure data of all of the compounds were also obtained in this work. Anhydrous 2a and 3a exhibit higher density, good thermal stability, and low mechanical sensitivity. The strategy of covalent bond modification for the host molecules of energetic frameworks shows enormous potential in eliminating the crystalline H2O of hydration and exploring high energy density materials.
Collapse
Affiliation(s)
- Zhe Wang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Qi Lai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Feng Y, Zhang J, Cao W, Zhang J, Shreeve JM. A promising perovskite primary explosive. Nat Commun 2023; 14:7765. [PMID: 38012175 PMCID: PMC10681991 DOI: 10.1038/s41467-023-43320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
A primary explosive is an ideal chemical substance for performing ignition in military and commercial applications. For over 150 years, nearly all of the developed primary explosives have suffered from various issues, such as troublesome syntheses, high toxicity, poor stability or/and weak ignition performance. Now we report an interesting example of a primary explosive with double perovskite framework, {(C6H14N2)2[Na(NH4)(IO4)6]}n (DPPE-1), which was synthesized using a simple green one-pot method in an aqueous solution at room temperature. DPPE-1 is free of heavy metals, toxic organic components, and doesn't involve any explosive precursors. It exhibits good stability towards air, moisture, sunlight, and heat and has acceptable mechanical sensitivities. It affords ignition performance on par with the most powerful primary explosives reported to date. DPPE-1 promises to meet the challenges existing with current primary explosives, and this work could trigger more extensive applications of perovskite.
Collapse
Affiliation(s)
- Yongan Feng
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China.
| | - Jichuan Zhang
- Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343, USA
| | - Weiguo Cao
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, 518055, Shenzhen, China.
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343, USA.
| |
Collapse
|
5
|
Chang J, Xiong J, Jia H, He C, Pang S, Shreeve JM. Polyiodo Azole-Based Metal-Organic Framework Energetic Biocidal Material for Synergetic Sterilization Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45668-45675. [PMID: 37725370 DOI: 10.1021/acsami.3c10026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Biological hazards caused by bacteria, viruses, and toxins have become a major survival and development issue facing the international community. However, the traditional method of disinfection and sterilization is helpless in dealing with viruses that spread quickly and are highly infectious. Metal-organic framework (MOF) biocidal materials hold promise as superior alternatives to traditional sterilization materials because of their stable framework structures and unique properties. Now, we demonstrate for the first time the synthesis of a MOF (TIBT-Cu) containing Cu metal centers and tetraiodo-4,4'-bi-1,2,4-triazole as the main ligand. This novel MOF biocidal material has good thermal stability (Td = 278 °C), excellent mechanical sensitivity, and a high bacteriostatic efficiency (>99.90%). Additionally, the particles produced by the combustion of TIBT-Cu are composed of active iodine substances and CuO particles, which can act synergistically against harmful microorganisms such as bacteria and viruses. This study provides a new perspective for the preparation of highly effective bactericidal materials.
Collapse
Affiliation(s)
- Jinjie Chang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Xiong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongfu Jia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chunlin He
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
6
|
Yu ZH, Liu DX, Ling YY, Chen XX, Shang Y, Chen SL, Ye ZM, Zhang WX, Chen XM. Periodate-based molecular perovskites as promising energetic biocidal agents. SCIENCE CHINA MATERIALS 2022; 66:1641-1648. [PMID: 36532126 PMCID: PMC9734302 DOI: 10.1007/s40843-022-2257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Epidemics caused by pathogens in recent years have created an urgent need for energetic biocidal agents with the capacity of detonation and releasing bactericides. Herein we present a new type of energetic biocidal agents based on a series of iodine-rich molecular perovskites, (H2dabco)M(IO4)3 (dabco = 1,4-diazabicyclo[2.2.2]octane, M = Na+/K+/Rb+/NH4 + for DAI-1/2/3/4) and (H2dabco)Na(H4IO6)3 (DAI-X1). These compounds possess a cubic perovskite structure, and notably have not only high iodine contents (49-54 wt%), but also high performance in detonation velocity (6.331-6.558 km s-1) and detonation pressure (30.69-30.88 GPa). In particular, DAI-4 has a very high iodine content of 54.0 wt% and simultaneously an exceptional detonation velocity up to 6.558 km s-1. As disclosed by laser scanning confocal microscopy observation and a standard micro-broth dilution method, the detonation products of DAI-4 exhibit a broad-spectrum bactericidal effect against bacteria (E. coli, S. aureus, and P. aeruginosa). The advantages of easy scale-up synthesis, low cost, high detonation performance, and high iodine contents enable these periodate-based molecular perovskites to be highly promising candidates for energetic biocidal agents. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s40843-022-2257-6.
Collapse
Affiliation(s)
- Zhi-Hong Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - De-Xuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yu Shang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shao-Li Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Zi-Ming Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
| |
Collapse
|
7
|
Tan B, Yang X, Dou J, Duan B, Lu X, Liu N. Research progress of EMOFs-based burning rate catalysts for solid propellants. Front Chem 2022; 10:1032163. [PMID: 36311438 PMCID: PMC9608550 DOI: 10.3389/fchem.2022.1032163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Energetic Metal Organic Frameworks (EMOFs) have been a hotspot of research on solid propellants in recent years. In this paper, research on the application of EMOFs-based burning rate catalysts in solid propellants was reviewed and the development trend of these catalysts was explored. The catalysts analyzed included monometallic organic frameworks-based energetic burning rate catalysts, bimetallic multifunctional energetic burning rate catalysts, carbon-supported EMOFs burning rate catalysts, and catalysts that can be used in conjunction with EMOFs. The review suggest that monometallic organic frameworks-based burning rate catalysts have relatively simple catalytic effects, and adding metal salts can improve their catalytic effect. Bimetallic multifunctional energetic burning rate catalysts have excellent catalytic performance and the potential for broad application. The investigation of carbon-supported EMOFs burning rate catalysts is still at a preliminary stage, but their preparation and application have become a research focus in the burning rate catalyst field. The application of catalysts that can be compounded with EMOFs should be promoted. Finally, environmental protection, high energy and low sensitivity, nanometerization, multifunctional compounding and solvent-free are proposed as key directions of future research. This study aims to provide a reference for the application of energetic organic burning rate catalysts in solid propellants.
Collapse
Affiliation(s)
- Bojun Tan
- *Correspondence: Bojun Tan, ; Ning Liu,
| | | | | | | | | | - Ning Liu
- *Correspondence: Bojun Tan, ; Ning Liu,
| |
Collapse
|
8
|
Singh J, Chinnam AK, Staples RJ, Shreeve JM. Energetic Salts of Sensitive N,N'-(3,5-Dinitropyrazine-2,6-diyl)dinitramide Stabilized through Three-Dimensional Intermolecular Interactions. Inorg Chem 2022; 61:16493-16500. [PMID: 36194387 DOI: 10.1021/acs.inorgchem.2c02800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-nitration of 2,6-diamino-3,5-dinitropyrazine (ANPZ) leads to a sensitive energetic compound N,N'-(3,5-dinitropyrazine-2,6-diyl)dinitramide. This nitro(nitroamino) compound was stabilized by synthesizing energetic salts, dipotassium (3,5-dinitropyrazine-2,6-diyl)bis(nitroamide) (3) and diammonium (3,5-dinitropyrazine-2,6-diyl)bis(nitroamide) (4). Compounds 3 and 4 are fully characterized by single-crystal X-ray diffraction. Compound 3 exhibits a three-dimensional energetic metal-organic framework (3D EMOF) structure and an outstanding overall performance by combining high experimental density (2.10 g cm-3), good thermal stability (Td(onset) = 220 °C), and good calculated performance of detonation (D = 8300 m s-1, P = 29.9 GPa). Compound 4 has acceptable thermal stability (155 °C), moderate experimental density (1.73 g cm-3), and good calculated performance of detonation (D = 8624 m s-1, P = 30.8 GPa). The sensitivities of compounds 3 and 4 toward impact and friction were determined following standard methods (BAM). The energetic character of compounds 3 and 4 was determined using red-hot needle and heated plate tests. The results highlight a 3D EMOF (3) based on a six-membered heterocycle as a potential energetic material.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
9
|
Zhang L, Dong WS, Lu ZJ, Wang TW, Zhang C, Zhou ZN, Zhang JG. Synthesis and characterization of thermally stable energetic complexes with 3,5-diaminopyrazolone-4-oxime as a nitrogen-rich ligand. CrystEngComm 2022. [DOI: 10.1039/d2ce00715k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two thermally stable complexes based on DAPO were synthesized. The thermal decomposition temperatures were 287 °C and 344 °C, respectively. The detonation properties of the complexes were excellent with good detonation velocity and detonation pressure superior to that of TNT.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wen-Shuai Dong
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ting-Wei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zun-Ning Zhou
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Song Q, Zhang L, Mo Z. Alleviating the stability–performance contradiction of cage-like high-energy-density materials by a backbone-collapse and branch-heterolysis competition mechanism. Phys Chem Chem Phys 2022; 24:19252-19262. [DOI: 10.1039/d2cp02061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Key role of cage-like conformations in alleviating the stability–performance contradiction of HEDMs.
Collapse
Affiliation(s)
- Qingguan Song
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
- CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Lei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
- CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088, China
| | - Zeyao Mo
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
- CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088, China
| |
Collapse
|
11
|
Singh J, Staples RJ, Shreeve JM. Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61357-61364. [PMID: 34920662 DOI: 10.1021/acsami.1c21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polynitro compounds exhibit high density and good oxygen balance, which are desirable for energetic material applications, but their syntheses are often very challenging. Now, the design and syntheses of a new three-dimensional (3D) energetic metal-organic framework (EMOF) and high-energy-density materials (HEDMs) with good thermal stabilities and detonation properties based on a polynitro pyrazole are reported. Dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5) exhibits a 3D EMOF structure with good thermal stability (202 °C), a high density of 2.15 g cm-3 at 100 K (2.10 g cm-3 at 298 K) in combination with superior detonation performance (Dv = 7965 m s-1, P = 29.3 GPa). Dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (7) exhibits a good density of 1.88 g cm-3 at 100 K (1.83 g cm-3 at 298 K) and superior thermal stability (218 °C), owing to the presence of 3D hydrogen-bonding networks. Its detonation velocity (8931 m s-1) and detonation pressure (35.9 GPa) are considerably superior to those of 1,3,5-trinitro-1,3,5-triazine (RDX). The results highlight the syntheses of a 3D EMOF (5) and HEDM (7) with five nitro groups as potential energetic materials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
12
|
Chang J, Zhao G, Zhao X, He C, Pang S, Shreeve JM. New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents. Acc Chem Res 2021; 54:332-343. [PMID: 33300791 DOI: 10.1021/acs.accounts.0c00623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For a very long time, frequent occurrences of biocrises have wreaked havoc on human beings, animals, and the environment. As a result, it is necessary to develop biocidal agents to destroy or neutralize active agents by releasing large amounts of strong biocides which are obtained upon detonation. Iodine is an efficient biocidal agent for bacteria, fungi, yeasts, viruses, spores, and protozoan parasites, and it is the sole element in the periodic table that can destroy microbes without contaminating the environment. Based on chemical biology, the mechanism of iodine as a bactericide may arise from oxidation and iodination reactions of cellular proteins and nucleic acids. However, because of the high vapor pressure causing elemental iodine to sublime readily at room temperature, it is inconvenient to use this material in its normal solid state directly as a biocidal agent under ambient conditions. Iodine-rich compounds where iodine is firmly bonded in molecules as a C-I or I-O moiety have been observed to be among the most promising energetic biocidal compounds. Gaseous products comprised of large amounts of iodine or iodine-containing components as strong biocides are released in the decomposition or explosion of iodine-rich compounds. Because of the detonation pressure, the iodine species are distributed over a large area greatly improving the efficacy of the system and requiring considerably less effort compared to traditional biocidal methods. The commercially available tetraiodomethane and tetraiodoethene, which possess superb iodine content also have the disadvantages of volatility, light sensitivity, and chemically reactivity, and therefore, are not suitable for use directly as biocidal agents. It is absolutely critical to synthesize new iodine-rich compounds with good thermal and chemical stabilities.In this Account, we describe our strategies for the syntheses of energetic iodine-rich compounds while maintaining the maximum iodine content with concomitant stability and routes for the synthesis of oxygen-containing iodine-rich compounds to improve the oxygen balance and achieve both high-energy and high-iodine content. In the other work, which involves cocrystals, iodine-containing polymers were also summarized. It is hoped that this Account will provide guidelines for the design and syntheses of new iodine-rich compounds and a route for the development of inexpensive, more efficient, and safer iodine-rich antibiological warfare agents of the future.
Collapse
Affiliation(s)
- Jinjie Chang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gang Zhao
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Xinyuan Zhao
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Chunlin He
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jean’ne M. Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
13
|
Gong L, Chen G, Liu Y, Wang T, Zhang J, Yi X, He P. Energetic metal–organic frameworks achieved from furazan and triazole ligands: synthesis, crystal structure, thermal stability and energetic performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj04486a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Energetic metal–organic frameworks (EMOFs) have witnessed increasing development and been proved as promising candidates for new high energy density materials (HEDMs).
Collapse
Affiliation(s)
- Lishan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Guo Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Yue Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Tingwei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoyi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
14
|
Đunović AB, Veljković DŽ. Halogen bonds as a tool in the design of high energetic materials: evidence from crystal structures and quantum chemical calculations. CrystEngComm 2021. [DOI: 10.1039/d1ce00854d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined crystallographic and quantum chemical study was performed to reveal the influence of halogen bonding on the sensitivity towards detonation of high-energy molecules.
Collapse
Affiliation(s)
- Aleksandra B. Đunović
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Dušan Ž. Veljković
- University of Belgrade – Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|