1
|
Chen Z, Zhang S, Wang X, Mi N, Zhang M, Zeng G, Dong H, Liu J, Wu B, Wei S, Gu C. Amine-Functionalized A-Center Sphalerite for Selective and Efficient Destruction of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37406161 DOI: 10.1021/acs.est.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Perfluorochemicals (PFCs), especially perfluorooctanoic acid (PFOA), have contaminated the ground and surface waters throughout the world. Efficient removal of PFCs from contaminated waters has been a major challenge. This study developed a novel UV-based reaction system to achieve fast PFOA adsorption and decomposition without addition of sacrificial chemicals by using synthetic photocatalyst sphalerite (ZnS-[N]) with sufficient surface amination and defects. The obtained ZnS-[N] has the capability of both reduction and oxidation due to the suitable band gap and photo-generated hole-trapping properties created by surface defects. The cooperated organic amine functional groups on the surface of ZnS-[N] play a crucial role in the selective adsorption of PFOA, which guarantee the efficient destruction of PFOA subsequently, and 1 μg L-1 PFOA could be degraded to <70 ng L-1 after 3 h in the presence of 0.75 g L-1 ZnS-[N] under 500 W UV irradiation. In this process, the photogenerated electrons (reduction) and holes (oxidation) on the ZnS-[N] surface work in a synergistic manner to achieve complete defluorination of PFOA. This study not only provides promising green technology for PFC-pollution remediation but also highlights the significance of developing a target system capable of both reduction and oxidation for PFC degradation.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Na Mi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
2
|
Lan X, Zhao M, Zhang X, Zhang H, Zhang L, Qi H. Mussel-inspired proteins functionalize catheter with antifouling and antibacterial properties. Int J Biol Macromol 2023:125468. [PMID: 37348578 DOI: 10.1016/j.ijbiomac.2023.125468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on catheter can cause inevitably infection. The development of multifunctional antibacterial coating is a promising strategy to resist the bacteria adhesion and biofilm formation. Herein, a mussel-inspired chimeric protein MZAgP is prepared and employed to modify a variety of polymeric catheters. The MZAgP is composed of mussel-adhesive peptide, zwitterionic peptide, and silver-binding peptide, which can endow catheters with antifouling, bactericidal and biocompatibility performances. Expectedly, negligible biofilm is observed on the MZAgP coated catheters after incubating with bacteria for 120 h. And ignorable hemolysis and cytotoxicity are obtained on coated catheters. In addition, the modified catheters also display persistent antifouling and bacteriostatic properties throughout 168 h under hydrodynamic conditions. Moreover, the coated catheters still remain excellent antifouling and antibacterial properties even after 2 months of storage. This multifunctional coating may be promising as antibacterial and antibiofilm material, and the coated catheters are potential in clinical application.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Hao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Wang F, Wang S, Nan L, Lu J, Zhu Z, Yang J, Zhang D, Liu J, Zhao X, Wu D. Conductive Adhesive and Antibacterial Zwitterionic Hydrogel Dressing for Therapy of Full-Thickness Skin Wounds. Front Bioeng Biotechnol 2022; 10:833887. [PMID: 35295646 PMCID: PMC8919325 DOI: 10.3389/fbioe.2022.833887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 01/17/2023] Open
Abstract
Any sort of wound injury leads to the destruction of skin integrity and wound formation, causing millions of deaths every year and accounting for 10% of death rate insight into various diseases. The ideal biological wound dressings are expected to possess extraordinary mechanical characterization, cytocompatibility, adhesive properties, antibacterial properties, and conductivity of endogenous electric current to enhance the wound healing process. Recent studies have demonstrated that biomedical hydrogels can be used as typical wound dressings to accelerate the whole healing process due to them having a similar composition structure to skin, but they are also limited by ideal biocompatibility and stable mechanical properties. To extend the number of practical candidates in the field of wound healing, we designed a new structural zwitterion poly[3-(dimethyl(4-vinylbenzyl) ammonium) propyl sulfonate] (SVBA) into a poly-acrylamide network, with remarkable mechanical properties, stable rheological property, effective antibacterial properties, strong adsorption, high penetrability, and good electroactive properties. Both in vivo and in vitro evidence indicates biocompatibility, and strong healing efficiency, indicating that poly (AAm-co-SVBA) (PAS) hydrogels as new wound healing candidates with biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuguang Wang
- Department of Orthopedic, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Nan
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jintao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, OH, United States
| | - Junjian Liu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| | - Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Junjian Liu, ; Xiao Zhao, ; Desheng Wu,
| |
Collapse
|
5
|
Yuan J, Zhang D, Fu Y, Ni Y, Wang Y, Protsak I, Yang Y, Peng Y, Tan J, Yang J. Comb-like structural modification stabilizes polyvinylidene fluoride membranes to realize thermal-regulated sustainable transportation efficiency. J Colloid Interface Sci 2021; 591:173-183. [PMID: 33596504 DOI: 10.1016/j.jcis.2021.01.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023]
Abstract
Hydrophobic micro-porous membrane such as polyvinylidene fluoride (PVDF) with excellent thermal-/chemical-stability and low surface energy has received extensive attention in industrial water treatment and sustainable energy conversion. However, undesirable contaminants caused by inevitable proteins or microorganisms adhesion may lead to a rapid loss of separation efficiency, which significantly deteriorate their porous structures and eventually limit their practical performance. Herein, we present a scalable approach for fabricating comb-like copolymer modified PVDF membranes (PVDF-PN@AgNPs) that prevent bacteria from proliferating on the surface and temperature-controlled release of adhered contaminants. Comb-like structured copolymers were imparted to a polydopamine (PDA)-treated PVDF membrane by Michael addition reaction, which enabled a covalent binding of comb-like structured copolymers to the membrane. Such unique structural design of grafted copolymer, containing hydrophilic side chain and temperature-responsive chain backbone, stably prevents bacteria adhesion and provides reversible surface wettability. Therefore, the resultant membranes were evaluated to prevent bacterial adhesion, high touch-killing efficiency and temperature-controlled contaminants release (~99% of protein and ~75% of bacteria). Moreover, with the collapse and stretch of grafted copolymer chain backbone, the synthetic membrane further reversibly adjusted inner micro-porous structure and surface wettability, which eventually helped to achieve variable water fluid transport efficiency. This study not only provides a feasible structural design for stably coping with the challenging of antifouling and subsequent contamination adhesion of PVDF membrane, but also potentially answers the significant gap between lab research advances and practical application, particularly in the industrial membrane field.
Collapse
Affiliation(s)
- Jingfeng Yuan
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH 44325, USA.
| | - Yanhong Fu
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yifeng Ni
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yiting Wang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Yipeng Peng
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50010, USA
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, PR China
| | - Jintao Yang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
6
|
Mao S, Zhang D, He X, Yang Y, Protsak I, Li Y, Wang J, Ma C, Tan J, Yang J. Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3089-3097. [PMID: 33400490 DOI: 10.1021/acsami.0c16510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous efforts to fabricate antimicrobial surfaces by simple yet universal protocols with high efficiency have attracted considerable interest but proved to be particularly challenging. Herein, we designed and fabricated a series of antimicrobial polymeric coatings with different functions from single to multiple mechanisms by selectively utilizing diethylene glycol diglycidyl ether (PEGDGE), polylysine, and poly[glycidylmethacrylate-co-3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (poly(GMA-co-DVBAPS)) via straightforward mussel-inspired codeposition techniques. Bactericidal polylysine endowed the modified surfaces with a high ability (∼90%) to kill attached bacteria, while PEGDGE components with unique surface hydration prevented bacterial adhesion, avoiding the initial biofilm formation. Moreover, excellent salt-responsive poly(GMA-co-DVBAPS) enabled reactant polymeric coatings to change chain conformations from shrinkable to stretchable state and subsequently release >90% attached bacteria when treated with NaCl solution, even after repeated cycles. Therefore, the obtained polymeric coatings, polydopamine/poly(GMA-co-DVBAPS) (PDA/PDV), polydopamine/polylysine/poly(GMA-co-DVBAPS) (PDA/l-PDV), and polydopamine/polylysine/poly(GMA-co-DVBAPS)/diethylene glycol diglycidyl ether (PDA/l-PDV-PEGDGE), controllably realized functions from single and dual to multiple antimicrobial mechanisms, as evidenced by long-term antifouling activity to bacteria, high bactericidal efficiency, and salt-responsive bacterial regeneration performance with several bacterial killing-release cycles. This study not only contributes to mussel-inspired chemistry for polymeric coatings with controllable functions but also provides a series of reliable and highly efficient antimicrobial surfaces for potential biomedical applications.
Collapse
Affiliation(s)
- Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P. R. China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Yuting Li
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Zhang M, Hou Z, Wang H, Zhang L, Xu J, Zhu J. Shaping Block Copolymer Microparticles by pH-Responsive Core-Cross-Linked Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:454-460. [PMID: 33373522 DOI: 10.1021/acs.langmuir.0c03099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Block copolymer microparticles with controllable morphology have drawn widespread attention owing to their promising applications in photonic materials, energy storage, and other areas. Hence, it is highly desired to achieve a controllable transformation of microparticle morphology. In this work, we report a simple method to shape the morphology of polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) microparticles, by employing core-cross-linked polymeric nanoparticles (CNPs) as cosurfactants which are synthesized through cross-linking P4VP segment of PS-block-poly(4-vinylpyridine) (PS-b-P4VP). The addition of pH-responsive CNPs makes the shape of pH-inert PS-b-PDMS microparticles sensitive to pH value. The PS-b-PDMS microparticles transformed from elongated Janus pupa-like particles to onion-like particles by decreasing the pH value of the aqueous phase. The deformation mechanism is investigated by changing pH value, the weight fraction of CNPs, and surfactant property. This study provides a facile strategy to deform microparticles of pH-inert BCPs by tuning pH value, which is anticipated to be applicable to other non-pH-responsive BCP microparticles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zaiyan Hou
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huiying Wang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Lab of Materials Processing and Die & Mould Technology and Key Lab of Materials Chemistry for Energy Conversion & Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|