1
|
Zhou S, Zeng A, Lu C, Wang M, Zhou C, Li Q, Dong L, Wang A, Tan L. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover. Inorg Chem 2024; 63:11802-11811. [PMID: 38861686 DOI: 10.1021/acs.inorgchem.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mengxin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Ma J, Xing F, Shimizu KI, Furukawa S. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation. Chem Sci 2024; 15:4086-4094. [PMID: 38487246 PMCID: PMC10935689 DOI: 10.1039/d3sc03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
The development of an efficient catalytic system for low-temperature acetylene semihydrogenation using nonnoble metals is important for the cost-effective production of polymer-grade pure ethylene. However, it remains challenging owing to the intrinsic low activity. Herein, we report a flexibly tunable catalyst design concept based on a pseudo-binary alloy, which enabled a remarkable enhancement in the catalytic activity, selectivity, and durability of a Ni-based material. A series of (Ni1-xCux)3Ga/TiO2 catalysts exhibiting L12-type pseudo-binary alloy structures with various Cu contents (x = 0.2, 0.25, 0.33, 0.5, 0.6, and 0.75) were prepared for active site tuning. The optimal catalyst, (Ni0.8Cu0.2)3Ga/TiO2, exhibited outstandingly high catalytic activity among reported 3d transition metal-based systems and excellent ethylene selectivity (96%) and long-term stability (100 h) with near full conversion even at 150 °C. A mechanistic study revealed that Ni2Cu hollow sites on the (111) surface weakened the strong adsorption of acetylene and vinyl adsorbate, which significantly accelerated the hydrogenation process and inhibited undesired ethane formation.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
3
|
Zeng A, Lu C, Xu B, Wang A, Liu YY, Sun Z, Wang Y. A highly active catalyst derived from CuO particles for selective hydrogenation of acetylene in large excess ethylene. Phys Chem Chem Phys 2023; 25:14598-14605. [PMID: 37191254 DOI: 10.1039/d3cp00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The removal of acetylene impurities is indispensable in the production of ethylene. An Ag-promoted Pd catalyst is industrially used to remove acetylene impurities by selective hydrogenation. It is highly desirable to replace Pd with non-precious metals. In the present investigation, CuO particles, which are most frequently used as the precursors for Cu-based catalysts, were prepared through the solution-based chemical precipitation method and used to prepare high-performance catalysts for selective hydrogenation of acetylene in large excess ethylene. The non-precious metal catalyst was prepared by treating CuO particles with acetylene-containing gas (0.5 vol% C2H2/Ar) at 120 °C and subsequent hydrogen reduction at 150 °C. The obtained catalyst was tested in selective hydrogenation of acetylene in a large excess of ethylene (0.72 vol% CH4 as the internal standard, 0.45 vol% C2H2, 88.83 vol% C2H4, 10.00 vol% H2). It exhibited significantly higher activity than the counterpart of Cu metals, achieving 100% conversion of acetylene without ethylene loss at 110 °C and atmospheric pressure. The characterization by means of XRD, XPS, TEM, H2-TPR, CO-FTIR, and EPR verified the formation of an interstitial copper carbide (CuxC), which was responsible for the enhanced hydrogenation activity.
Collapse
Affiliation(s)
- Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Bo Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Lu C, Zeng A, Wang Y, Wang A. Enhanced Hydrogenation Activity over a Zn-Modified Cu-Based Catalyst in Acetylene Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| |
Collapse
|
5
|
Tokranova EO, Tokranov AA, Yu Vinogradov K, Shafigulin RV, Bulanova AV. Mesoporous silica gel doped with dysprosium and modified with copper: A selective catalyst for the hydrogenation of 1‐hexyne/1‐hexene mixture. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Zhao W, Guan Z, Li D, Wang B, Fan M, Zhang R. Syngas Conversion to C 2 Species over WC and M/WC (M = Cu or Rh) Catalysts: Identifying the Function of Surface Termination and Supported Metal Type. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19491-19504. [PMID: 35467825 DOI: 10.1021/acsami.2c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the selectivity and activity of C2 species from syngas is still a challenge. In this work, catalysts with monolayer Cu or Rh supported over WC with different surface terminations (M/WC (M = Cu or Rh)) are rationally designed to facilitate C2 species generation. The complete reaction network is analyzed by DFT calculations. Microkinetics modeling is utilized to consider the experimental reaction temperature, pressure, and the coverage of the species. The thermal stabilities of the M/WC (M = Cu or Rh) catalysts are confirmed by AIMD simulations. The results show that the surface termination and supported metal types in the M/WC (M = Cu or Rh) catalysts can alter the existence form of abundant CHx (x = 1-3) monomer, as well as the activity and selectivity of CHx monomer and C2 species. Among these, only the Cu/WC-C catalyst is screened out to achieve outstanding activity and selectivity for C2H2 generation, attributing to that the synergistic effect of the subsurface C atoms and the surface monolayer Cu atoms presents the noble-metal-like character to promote the generation of CHx and C2 species. This work demonstrates a new possibility for rational construction of other catalysts with the non-noble metal supported by the metal carbide, adjusting the surface termination of metal carbide and the supported metal types can present the noble-metal-like character to tune catalytic performance of C2 species from syngas.
Collapse
Affiliation(s)
- Wantong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Zun Guan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Debao Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China
| | - Baojun Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| | - Maohong Fan
- College of Engineering and Applied Science, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| |
Collapse
|
7
|
Cu/O Frustrated Lewis Pairs on Cu Doped CeO2(111) for Acetylene Hydrogenation: A First-Principles Study. Catalysts 2022. [DOI: 10.3390/catal12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this work, the H2 dissociation and acetylene hydrogenation on Cu doped CeO2(111) were studied using density functional theory calculations. The results indicated that Cu doping promotes the formation of oxygen vacancy (Ov) which creates Cu/O and Ce/O frustrated Lewis pairs (FLPs). With the help of Cu/O FLP, H2 dissociation can firstly proceed via a heterolytic mechanism to produce Cu-H and O-H by overcoming a barrier of 0.40 eV. The H on Cu can facilely migrate to a nearby oxygen to form another O-H species with a barrier of 0.43 eV. The rate-determining barrier is lower than that for homolytic dissociation of H2 which produces two O-H species. C2H2 hydrogenation can proceed with a rate-determining barrier of 1.00 eV at the presence of Cu-H and O-H species., While C2H2 can be catalyzed by two O-H groups with a rate-determining barrier of 1.06 eV, which is significantly lower than that (2.86 eV) of C2H2 hydrogenated by O-H groups on the bare CeO2(111), showing the high activity of Cu doped CeO2(111) for acetylene hydrogenation. In addition, the rate-determining barrier of C2H4 further hydrogenated by two O-H groups is 1.53 eV, much higher than its desorption energy (0.72 eV), suggesting the high selectivity of Cu doped CeO2(111) for C2H2 partial hydrogenation. This provides new insights to develop effective hydrogenation catalysts based on metal oxide.
Collapse
|
8
|
Lu C, Zeng A, Wang Y, Wang A. High‐Performance Catalysts Derived from Cupric Subcarbonate for Selective Hydrogenation of Acetylene in an Ethylene Stream. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment Dalian University of Technology Dalian 116024 P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
9
|
Lu C, Zeng A, Wang Y, Wang A. Copper-Based Catalysts for Selective Hydrogenation of Acetylene Derived from Cu(OH) 2. ACS OMEGA 2021; 6:3363-3371. [PMID: 33553954 PMCID: PMC7860242 DOI: 10.1021/acsomega.0c05759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 05/28/2023]
Abstract
Replacing precious metals with cheap metals in catalysts is a topic of interest in both industry and academia but challenging. Here, a selective hydrogenation catalyst was prepared by thermal treatment of Cu(OH)2 nanowires with acetylene-containing gas at 120 °C followed by hydrogen reduction at 150 °C. The characterization by means of transmission electron microscopy observation, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that two crystallites were present in the resultant catalyst. One of the crystal phases was metal Cu, whereas the other crystal phase was ascribed to an interstitial copper carbide (Cu x C) phase. The reduction of freshly prepared copper (II) acetylide (CuC2) at 150 °C also afforded the formation of Cu and Cu x C crystallites, indicating that CuC2 was the precursor or an intermediate in the formation of Cu x C. The prepared catalysts consisting of Cu and Cu x C exhibited a considerably high hydrogenation activity at low temperatures in the selective hydrogenation of acetylene in the ethylene stream. In the presence of a large excess of ethylene, acetylene was completely converted at 110 °C and atmospheric pressure with an ethane selectivity of <15%, and the conversion and selectivity were constant in a 260 h run.
Collapse
Affiliation(s)
- Chenyang Lu
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Aonan Zeng
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|