1
|
Wang R, Luo H, Duan C, Liu H, Sun M, Zhou Q, Ou Z, Lu Y, Luo G, Yu JC, Hu Z. Crystal OH mediating pathway for hydrogen peroxide production via two-electron water oxidation in non-carbonate electrolytes. Nat Commun 2024; 15:10456. [PMID: 39622859 PMCID: PMC11612146 DOI: 10.1038/s41467-024-54593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Water oxidation presents a promising avenue for hydrogen peroxide (H2O2) production. However, the reliance on alkaline bicarbonate electrolytes as an intermediate has limitations, such as H2O2 decomposition and a narrow pH effectiveness range (7-9), restricting its utility across wider pH ranges. This study unveils a crystal OH mediating pathway that stabilizes SO4OH* as a crucial intermediate. Basic copper carbonate (Cu2(OH)2CO3) tablets, commonly found on cultural relics, exhibit the capability to generate H2O2 in neutral or acidic non-bicarbonate electrolytes. By leveraging this crystal OH mediating strategy, considerable H2O2 production in Na2SO4 electrolytes is achievable. Notably, the H2O2 production rate can reach 64.35 μmol h-1 at 3.4 V vs. RHE in a 50 mL 0.5 M Na2SO4 electrolyte. This research underscores the importance of crystal part in catalyst in catalyzing the 2e- water oxidation reaction, offering valuable insights for future investigations.
Collapse
Affiliation(s)
- Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huimin Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mengdi Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Quan Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yinglong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guanghui Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jimmy C Yu
- Department of chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Fattahimoghaddam H, Kim IH, Dhandapani K, Jeong YJ, An TK. Copper-Nanoparticle-Decorated Hydrothermal Carbonaceous Carbon-Polydimethylsiloxane Nanocomposites: Unveiling Potential in Simultaneous Light-Driven Interfacial Water Evaporation and Power Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403565. [PMID: 38738743 DOI: 10.1002/smll.202403565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/04/2024] [Indexed: 05/14/2024]
Abstract
This study introduces a hydrothermal synthesis method that uses glucose and Cu2+ ions to create a Cu-nanoparticle (NP)-decorated hydrothermal carbonaceous carbon hybrid material (Cu-HTCC). Glucose serves both as a reducing agent, efficiently transforming Cu2+ ions into elemental Cu nanostructures, and as a precursor for HTCC microstructures. An enhanced plasmon-induced electric field resulting from Cu NPs supported on microstructure matrices, coupled with a distinctive localized π-electronic configuration in the hybrid material, as confirmed by X-ray photoelectron spectroscopic analysis, lead to the heightened optical absorption in the visible-near-infrared range. Consequently, flexible nanocomposites of Cu-HTCC/PDMS and Cu-HTCC@PDMS (PDMS = polydimethylsiloxane) are designed as 2 and 3D structures, respectively, that exhibit broad-spectrum solar absorption. These composites promise efficient photo-assisted thermoelectric power generation and water evaporation, demonstrating commendable mechanical stability and flexibility. Notably, the Cu-HTCC@PDMS composite sponge simultaneously exhibits commendable efficiency in both water evaporation (1.47 kg m-2 h-1) and power generation (32.1 mV) under 1 sunlight illumination. These findings unveil new possibilities for innovative photothermal functional materials in diverse solar-driven applications.
Collapse
Affiliation(s)
- Hossein Fattahimoghaddam
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
| | - In Ho Kim
- Department of Materials Science and Engineering, Korea National University of Transportation, Chungju, 27469, South Korea
| | - Keerthnasre Dhandapani
- Department of IT - Energy Convergence (BK21 PLUS), Korea National University of Transportation, Chungju, 27469, South Korea
| | - Yong Jin Jeong
- Department of Materials Science and Engineering, Korea National University of Transportation, Chungju, 27469, South Korea
- Department of IT - Energy Convergence (BK21 PLUS), Korea National University of Transportation, Chungju, 27469, South Korea
| | - Tae Kyu An
- Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, South Korea
| |
Collapse
|
3
|
Luo Z, Chen J, Fang Y, Xie L, Liu Q, Huang J, Liu M. Synthesis of borocarbonitride nanosheets from biomass for enhanced charge separation and hydrogen production. Sci Rep 2024; 14:14443. [PMID: 38910218 PMCID: PMC11194275 DOI: 10.1038/s41598-024-65380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
Borocarbonitride (BCN) materials have shown significant potential as photocatalysts for hydrogen production. However, traditional bulk BCN exhibits only moderate photocatalytic activity. In this study, we introduce an environmentally conscious and sustainable strategy utilizing biomass-derived carbon sources to synthesize BCN nanosheets. The hydrogen evolution efficiency of BCN-A nanosheets (110 μmol h-1 g-1) exceeds that of bulk BCN photocatalysts (12 μmol h-1 g-1) by 9.1 times, mainly due to the increased surface area (205 m2g-1) and the presence of numerous active sites with enhanced charge separation capabilities. Notably, the biomass-derived BCN nanosheets offer key advantages such as sustainability, cost-effectiveness, and reduced carbon footprint during hydrogen production. These findings highlight the potential of biomass-based BCN nanomaterials to facilitate a greener and more efficient route to hydrogen energy, contributing to the global transition towards renewable energy solutions.
Collapse
Affiliation(s)
- Zhishan Luo
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China.
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.
| | - Jinhao Chen
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China
| | - Yuanmeng Fang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Liyan Xie
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China
| | - Qing Liu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China
| | - Jianhui Huang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China.
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China.
| | - Minghua Liu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian, 351100, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
4
|
Xu H, Li M, Ou Y, Li S, Zheng X, Li X, Tang C, Chen D. The reconstitution of reed cellulose by the hydrothermal carbonization and acid etching to improve the performance of photocatalytic degradation of antibiotics. Int J Biol Macromol 2023; 236:123976. [PMID: 36906212 DOI: 10.1016/j.ijbiomac.2023.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
As an economical and environment-friendly material, hydrothermal carbonation carbon (HTCC) has been widely used in the field of adsorption and catalysis. Previous studies mainly used glucose as raw material to prepare HTCC. Cellulose in biomass can be further hydrolyzed into carbohydrate; however, there are few reports on the direct preparation of HTCC from biomass and the relevant synthesis mechanism is unclear. In this study, HTCC with efficient photocatalytic performance was prepared from reed straw using dilute acid etching under hydrothermal conditions and was used for the degradation of tetracycline (TC). The mechanism of photodegradation of TC by HTCC was systematically elucidated through various characterization techniques and density functional theory (DFT) calculations. This study provides a new perspective on the preparation of green photocatalysts and demonstrates their promising application in environmental remediation.
Collapse
Affiliation(s)
- Hao Xu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yangyuan Ou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shang Li
- School of Foreign Languages, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Zheng
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xingong Li
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Daihui Chen
- Changsha Forest Protection Station, Changsha 410004, China
| |
Collapse
|
5
|
Kawawaki T, Akinaga Y, Yazaki D, Kameko H, Hirayama D, Negishi Y. Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry 2023; 29:e202203387. [PMID: 36524615 PMCID: PMC10107262 DOI: 10.1002/chem.202203387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Suppressing the amount of carbon dioxide in the atmosphere is an essential measure toward addressing global warming. Specifically, the photocatalytic CO2 reduction reaction (CRR) is an effective strategy because it affords the conversion of CO2 into useful carbon feedstocks by using sunlight and water. However, the practical application of photocatalyst-promoting CRR (CRR photocatalysts) requires significant improvement of their conversion efficiency. Accordingly, extensive research is being conducted toward improving semiconductor photocatalysts, as well as cocatalysts that are loaded as active sites on the photocatalysts. In this review, we summarize recent research and development trends in the improvement of cocatalysts, which have a significant impact on the catalytic activity and selectivity of photocatalytic CRR. We expect that the advanced knowledge provided on the improvement of cocatalysts for CRR in this review will serve as a general guideline to accelerate the development of highly efficient CRR photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daichi Yazaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Hinano Kameko
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daisuke Hirayama
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
6
|
Gu L, Deng G, Huang R, Shi X. Optimization of Fe/Ni organic frameworks with core-shell structures for efficient visible-light-driven reduction of carbon dioxide to carbon monoxide. NANOSCALE 2022; 14:15821-15831. [PMID: 36255381 DOI: 10.1039/d2nr04377g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To address CO2 emissions caused by the overuse of fossil fuels, photocatalytic CO2 reduction from metal-organic frameworks (MOFs) to valuable chemicals is critical for energy conversion and storage. Core-shell MOFs improve interfacial interactions, increasing the number of active sites in the catalyst, thereby improving the photocatalytic reduction. In this work, the catalytic performance of Fe/Ni-MOFs toward photocatalytic CO2 reduction was improved using a bimetallic strategy. We successfully synthesized a series of Fe/Ni-MOFs with a core-shell structure using a single-step approach combined with hydrothermal synthesis. By altering the synthesis conditions of the bimetallic organic skeleton and contrasting it with a single MOF, we successfully synthesized Fe/Ni-T120 through an efficient photocatalytic reduction of CO2. The results of photocatalytic CO2 reduction experiments indicated that upon using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the CO evolution rate of Fe/Ni-T120 reached 9.74 mmol g-1 h-1 and the CO2 to CO selectivity reached up to 92.1%. Additionally, Fe/Ni-T120 has a broad response range to visible light, a high photocurrent intensity, good chemical stability, and strong photocatalytic efficiency, even after repeated cycles. This study proposes a straightforward method for producing adaptable and stable MOFs for effective photocatalytic CO2 reduction that is driven by visible light.
Collapse
Affiliation(s)
- Lin Gu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Ruting Huang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
7
|
Mosali VSS, Bond AM, Zhang J. Alloying strategies for tuning product selectivity during electrochemical CO 2 reduction over Cu. NANOSCALE 2022; 14:15560-15585. [PMID: 36254597 DOI: 10.1039/d2nr03539a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive reliance on fossil fuels has led to the release and accumulation of large quantities of CO2 into the atmosphere which has raised serious concerns related to environmental pollution and global warming. One way to mitigate this problem is to electrochemically recycle CO2 to value-added chemicals or fuels using electricity from renewable energy sources. Cu is the only metallic electrocatalyst that has been shown to produce a wide range of industrially important chemicals at appreciable rates. However, low product selectivity is a fundamental issue limiting commercial applications of electrochemical CO2 reduction over Cu catalysts. Combining copper with other metals that actively contribute to the electrochemical CO2 reduction reaction process can selectively facilitate generation of desirable products. Alloying Cu can alter surface binding strength through electronic and geometric effects, enhancing the availability of surface confined carbon species, and stabilising key reduction intermediates. As a result, significant research has been undertaken to design and fabricate copper-based alloy catalysts with structures that can enhance the selectivity of targeted products. In this article, progress with use of alloying strategies for development of Cu-alloy catalysts are reviewed. Challenges in achieving high selectivity and possible future directions for development of new copper-based alloy catalysts are considered.
Collapse
Affiliation(s)
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton 3800, Victoria, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
8
|
Novel 2D/2D BiOBr/Zn(OH)2 photocatalysts for efficient photoreduction CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Subedi N, Mesceriakovas A, Pham K, Heponiemi A, Karhunen T, Saarinen JJ, Lassi U, Lähde A. Aerosol processing technique for the synthesis of mixed-phase copper on carbon catalyst: insights into CO 2adsorption and photocatalytic activity. NANOTECHNOLOGY 2022; 33:495601. [PMID: 36041324 DOI: 10.1088/1361-6528/ac8d9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, spray pyrolysis; an aerosol processing technique was utilized to produce a mixed-phase copper on carbon (Cu/CuxO@C) catalyst. The catalyst production was performed via chemical reduction of copper nitrate by a reducing sugar, i.e. glucose, using aqueous solution. The physical and chemical properties of the produced particles was assessed using various characterization techniques. The synthesis temperature had pronounced effect on the final particles. Since CO2adsorption onto the catalyst is an important step in catalytic CO2reduction processes, it was studied using thermogravimetric and temperature programmed desorption techniques. Additionally, photocatalytic activity of the particles was evaluated by gas-phase oxidation of acetylene gas which revealed excellent activity under both UV and visible light irradiation indicating the possible use of wider range of the solar spectrum.
Collapse
Affiliation(s)
- Nabin Subedi
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Arunas Mesceriakovas
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Khai Pham
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
| | - Anne Heponiemi
- Research Unit of Sustainable Chemistry, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Tommi Karhunen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko J Saarinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Anna Lähde
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
10
|
Gao W, Wang C, Chen L, Zhu C, Li P, Li J, Liu J, Zhang X. Bifunctional metal‐organic frameworks afforded by postsynthetic modification for efficient cycloaddition of CO
2
and epoxides. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cui‐Li Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cai‐Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Ji‐Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun P.R. China
| | - Jie‐Ping Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Xiu‐Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| |
Collapse
|
11
|
Chen Z, Jia H, Guo Y, Li Y, Liu Z. Nitrogen-doped hydrochars from shrimp waste as visible-light photocatalysts: Roles of nitrogen species. ENVIRONMENTAL RESEARCH 2022; 208:112695. [PMID: 35007542 DOI: 10.1016/j.envres.2022.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The increasing shrimp waste production has caused severe environmental problems. In this study, nitrogen-doped hydrochars (NDHCs) were facilely synthesized from shrimp waste and glucose by one-pot hydrothermal carbonization (HTC). The characterizations showed that NDHCs had large surface areas of up to 30.5 m2 g-1 with numerous functional groups on their porous surfaces. The nitrogen content (1.3-2.8%) and species distribution in NDHCs were associated with the amount of added glucose. These NDHCs were applied as visible-light-induced photocatalysts, and their photocatalytic performances were evaluated by methylene blue (MB) degradation. The removal rate of MB reached 88.9% after 1 h of visible light radiation by NDHC-1, which was 2.3 times higher than that of glucose-derived hydrochar (GHC). The mechanism study showed that the improved photoactivity of NDHCs was attributed to the increased adsorption capacity by porous surface and the promoted formation of hydroxyl radicals by synergistic effects of quaternary N and pyrrolic N during photocatalysis. This study offered a green approach to preparing tunable, efficient, and low-cost photocatalyst from waste biomass and insight into the photocatalytic mechanism of hydrochar materials.
Collapse
Affiliation(s)
- Zeliang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Jia
- Information Center of Ministry of Ecology and Environment, 1 Yuhui South Road, Beijing, 100029, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, China
| | - Yi Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS), Beijing, 100190, PR China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Lan Y, Kang S, Cui D, Hu Z. A High-Efficiency Hematite Photoanode with Enhanced Bonding Energy Around Fe Atoms. Chemistry 2021; 27:4089-4097. [PMID: 33242224 DOI: 10.1002/chem.202004569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Indexed: 01/20/2023]
Abstract
Hematite nanoarrays are important photoanode materials. However, they suffer from serious problems of charge transfer and surface states; in particular, the surface states hinder the increase in photocurrent. A previous strategy to suppress the surface state is the deposition of an Fe-free metal oxide overlayer. Herein, from the viewpoint of atomic bonding energy, it is found that the strength of bonding around Fe atoms in the hematite is the key to suppressing the surface states. By treating the surface of hematite with Se and NaBH4 , the Fe2 O3 transforms to a double-layer nanostructure. In the outer layer, the Fe-O bonding is reinforced and the Fe-Se bonding is even stronger. Therefore, the surface states are inhibited and the increase in the photocurrent density becomes much faster. Besides, the treatment constructs a nanoscale p-n junction to promote the charge transfer. Improvements are achieved in onset potential (0.25 V shift) and in photocurrent density (5.8 times). This work pinpoints the key to suppressing the surface states and preparing a high-efficiency hematite nanoarray, and deepens our understanding of hematite photoanodes.
Collapse
Affiliation(s)
- Yangchun Lan
- School of Microelectronics, Southern University of Science, and Technology, Shenzhen, 518055, P. R. China
| | - Shuai Kang
- Micro-nano Manufacturing and System Integration Center, Chongqing Institute of Green and Intelligent Technology (CIGIT), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Dehu Cui
- School of Microelectronics, Southern University of Science, and Technology, Shenzhen, 518055, P. R. China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong, Provincial Key Laboratory of, Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|