1
|
Kim JY, Rhim WK, Lee SY, Park JM, Song DH, Cha SG, Lee SH, Hwang DY, Kim BJ, Rho S, Ahn TK, Park CG, Han DK. Hybrid Nanoparticle Engineered with Transforming Growth Factor -β1-Overexpressed Extracellular Vesicle and Cartilage-Targeted Anti-Inflammatory Liposome for Osteoarthritis. ACS NANO 2024; 18:33937-33952. [PMID: 39648484 DOI: 10.1021/acsnano.4c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Extracellular vesicles (EVs) possess the characteristics of their parent cells, based on which various studies have actively investigated treatments for diseases using mesenchymal stem cell-derived EVs due to their regenerative activity. Furthermore, in recent years, there have been significant efforts to engineer EVs to improve their native activities and integrate additional functions. Although both endogenous and exogenous methods are used for engineering EVs, endogenous methods may pose the problem of administering substances to cells undergoing metabolic changes, which can cause potential side effects. In addition, exogenous methods may have the limitation of losing beneficial factors inside EVs due to membrane disruption during engineering processes. Surface modification of EVs may also impair efficiency due to the presence of proteins on the EV surface. Therefore, in this study, a stable and efficient engineering method was achieved through the ethanol-mediated hybridization of EVs and functionalized lipid nanoparticles (LNPs) with a fusogenic lipid component. During hybridization, the internal bioactive factors and targeting moiety were maintained to possess the characteristics of both LNPs and EVs. The Ab-Hybrid, which was successfully synthesized through hybridization with nicotinamide-encapsulated and Col2A1 antibody-modified liposome and Transforming growth factor-β1 (TGF-β1)-overexpressed EVs, was administered to osteoarthritis (OA)-induced rats undergoing the destabilization of the medial meniscus surgery. Ultimately, the Ab-Hybrid demonstrated excellent chondroprotective and anti-inflammatory effects with targeting and long-lasting properties in OA lesions. We anticipate that this approach for manufacturing hybrid particles will serve as a valuable EV engineering method and a versatile platform technology applicable to various diseases.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Jung Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Byoung Ju Kim
- ATEMs, Jeongui-ro 8-gil, Songpa-gu, Seoul-si 05836, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Tae-Keun Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center CHA University, Seongnam-si 13496, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
3
|
Cortelli G, Grob L, Patruno L, Cramer T, Mayer D, Fraboni B, Wolfrum B, de Miranda S. Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy-Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7602-7609. [PMID: 36706051 PMCID: PMC9923676 DOI: 10.1021/acsami.2c21921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar's optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy-force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar.
Collapse
Affiliation(s)
- Giorgio Cortelli
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Leroy Grob
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Luca Patruno
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Tobias Cramer
- Department
of Physics and Astronomy, University of
Bologna, Viale Berti
Pichat 6/2, 40127 Bologna, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Beatrice Fraboni
- Department
of Physics and Astronomy, University of
Bologna, Viale Berti
Pichat 6/2, 40127 Bologna, Italy
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Stefano de Miranda
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
4
|
Shan H, Sun X, Liu X, Sun Q, He Y, Chen Z, Lin Q, Jiang Z, Chen X, Chen Z, Zhao S. One-Step Formation of Targeted Liposomes in a Versatile Microfluidic Mixing Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205498. [PMID: 36449632 DOI: 10.1002/smll.202205498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Targeted liposomes, as a promising carrier, have received tremendous attention in COVID-19 vaccines, molecular imaging, and cancer treatment, due to their enhanced cellular uptake and payload accumulation at target sites. However, the conventional methods for preparing targeted liposomes still suffer from limitations, including complex operation, time-consuming, and poor reproducibility. Herein, a facile and scalable strategy is developed for one-step construction of targeted liposomes using a versatile microfluidic mixing device (MMD). The engineered MMD provides an advanced synthesis platform for multifunctional liposome with high production rate and controllability. To validate the method, a programmed death-ligand 1 (PD-L1)-targeting aptamer modified indocyanine green (ICG)-liposome (Apt-ICG@Lip) is successfully constructed via the MMD. ICG and the PD-L1-targeting aptamer are used as model drug and targeting moiety, respectively. The Apt-ICG@Lip has high encapsulation efficiency (89.9 ± 1.4%) and small mean diameter (129.16 ± 5.48 nm). In vivo studies (PD-L1-expressing tumor models) show that Apt-ICG@Lip can realize PD-L1 targeted photoacoustic imaging, fluorescence imaging, and photothermal therapy. To verify the versatility of this approach, various targeted liposomes with different functions are further prepared and investigated. These experimental results demonstrate that this method is concise, efficient, and scalable to prepare multifunctional targeted liposomal nanoplatforms for molecular imaging and disease theranostics.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Xin Sun
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Xin Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Sun
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ziyan Chen
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Qibo Lin
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
5
|
Arivazhagan M, Kannan P, Maduraiveeran G. Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. BIOSENSORS 2022; 12:bios12121128. [PMID: 36551095 PMCID: PMC9776376 DOI: 10.3390/bios12121128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Herein, gold nanoclusters (Au NC) dispersed on gold dendrite (Au DS)-based flexible carbon fibre (AuNC@AuDS|CF) microelectrodes are developed using a one-step electrochemical approach. The as-fabricated AuNC@AuDS|CF microelectrodes work as the prospective electrode materials for the sensitive detection of nitric oxide (NO) in a 0.1 M phosphate buffer (PB) solution. Carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without any binder/extra reductant. The AuNC@AuDS|CF microelectrodes exhibit outstanding electrocatalytic activity towards NO oxidation, which is ascribed to their large electrochemical active surface area (ECSA), high electrical conductivity, and high dispersion of Au nanoclusters. As a result, the AuNC@AuDS|CF microelectrodes attain a rapid response time (3 s), a low limit of detection (LOD) (0.11 nM), high sensitivity (66.32 µA µM cm-2), a wide linear range (2 nM-7.7 µM), long-term stability, good reproducibility, and a strong anti-interference capability. Moreover, the present microsensor successfully tested for the discriminating detection of NO in real human serum samples, revealing its potential practicability.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Xu S, Deng Y, Luo J, Liu Y, He E, Yang Y, Zhang K, Sha L, Dai Y, Ming T, Song Y, Jing L, Zhuang C, Xu Q, Cai X. A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training. BIOSENSORS 2022; 12:bios12070546. [PMID: 35884349 PMCID: PMC9312960 DOI: 10.3390/bios12070546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Both the cellular- and population-level properties of involved neurons are essential for unveiling the learning and memory functions of the brain. To give equal attention to these two aspects, neural sensors based on microelectrode arrays (MEAs) have been in the limelight due to their noninvasive detection and regulation capabilities. Here, we fabricated a neural sensor using carboxylated graphene/3,4-ethylenedioxythiophene:polystyrenesulfonate (cGO/PEDOT:PSS), which is effective in sensing and monitoring neuronal electrophysiological activity in vitro for a long time. The cGO/PEDOT:PSS-modified microelectrodes exhibited a lower electrochemical impedance (7.26 ± 0.29 kΩ), higher charge storage capacity (7.53 ± 0.34 mC/cm2), and improved charge injection (3.11 ± 0.25 mC/cm2). In addition, their performance was maintained after 2 to 4 weeks of long-term cell culture and 50,000 stimulation pulses. During neural network training, the sensors were able to induce learning function in hippocampal neurons through precise electrical stimulation and simultaneously detect changes in neural activity at multiple levels. At the cellular level, not only were three kinds of transient responses to electrical stimulation sensed, but electrical stimulation was also found to affect inhibitory neurons more than excitatory neurons. As for the population level, changes in connectivity and firing synchrony were identified. The cGO/PEDOT:PSS-based neural sensor offers an excellent tool in brain function development and neurological disease treatment.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Yuchun Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; (Y.D.); (L.S.); (Q.X.)
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (S.X.); (J.L.); (Y.L.); (E.H.); (Y.Y.); (K.Z.); (Y.D.); (T.M.); (Y.S.); (L.J.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
7
|
Lu B, Fan P, Wang Y, Dai Y, Xie J, Yang G, Mo F, Xu Z, Song Y, Liu J, Cai X. Neuronal Electrophysiological Activities Detection of Defense Behaviors Using an Implantable Microelectrode Array in the Dorsal Periaqueductal Gray. BIOSENSORS 2022; 12:bios12040193. [PMID: 35448253 PMCID: PMC9032743 DOI: 10.3390/bios12040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 06/07/2023]
Abstract
Defense is the basic survival mechanism of animals when facing dangers. Previous studies have shown that the midbrain periaqueduct gray (PAG) was essential for the production of defense responses. However, the correlation between the endogenous neuronal activities of the dorsal PAG (dPAG) and different defense behaviors was still unclear. In this article, we designed and manufactured microelectrode arrays (MEAs) whose detection sites were arranged to match the shape and position of dPAG in rats, and modified it with platinum-black nanoparticles to improve the detection performance. Subsequently, we successfully recorded the electrophysiological activities of dPAG neurons via designed MEAs in freely behaving rats before and after exposure to the potent analog of predator odor 2-methyl-2-thiazoline (2-MT). Results demonstrated that 2-MT could cause strong innate fear and a series of defensive behaviors, accompanied by the significantly increased average firing rate and local field potential (LFP) power of neurons in dPAG. We also observed that dPAG participated in different defense behaviors with different degrees of activation, which was significantly stronger in the flight stage. Further analysis showed that the neuronal activities of dPAG neurons were earlier than flight, and the intensity of activation was inversely proportional to the distance from predator odor. Overall, our results indicate that dPAG neuronal activities play a crucial role in controlling different types of predator odor-evoked innate fear/defensive behaviors, and provide some guidance for the prediction of defense behavior.
Collapse
Affiliation(s)
- Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (B.L.); (P.F.); (Y.W.); (Y.D.); (J.X.); (G.Y.); (F.M.); (Z.X.); (Y.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li Y, Xu S, Wang Y, Duan Y, Jia Q, Xie J, Yang X, Wang Y, Dai Y, Yang G, Yuan M, Wu X, Song Y, Wang M, Chen H, Wang Y, Cai X, Pei W. Wireless Closed-Loop Optical Regulation System for Seizure Detection and Suppression In Vivo. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.829751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are approximately 50 million people with epilepsy worldwide, even about 25% of whom cannot be effectively controlled by drugs or surgical treatment. A wireless closed-loop system for epilepsy detection and suppression is proposed in this study. The system is composed of an implantable optrode, wireless recording, wireless energy supply, and a control module. The system can monitor brain electrical activity in real time. When seizures are recognized, the optrode will be turned on. The preset photosensitive caged compounds are activated to inhibit the seizure. When seizures are inhibited or end, the optrode is turned off. The method demonstrates a practical wireless closed-loop epilepsy therapy system.
Collapse
|
9
|
Filevich O, Etchenique R. Photochemical biosignaling with ruthenium complexes. BIOMEDICAL APPLICATIONS OF INORGANIC PHOTOCHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
He E, Xu S, Dai Y, Wang Y, Xiao G, Xie J, Xu S, Fan P, Mo F, Wang M, Song Y, Yin H, Li Y, Wang Y, Cai X. SWCNTs/PEDOT:PSS-Modified Microelectrode Arrays for Dual-Mode Detection of Electrophysiological Signals and Dopamine Concentration in the Striatum under Isoflurane Anesthesia. ACS Sens 2021; 6:3377-3386. [PMID: 34410704 DOI: 10.1021/acssensors.1c01241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate detection of the degree of isoflurane anesthesia during a surgery is important to avoid the risk of overdose isoflurane anesthesia timely. To address this challenge, a four-shank implantable microelectrode array (MEA) was fabricated for the synchronous real-time detection of dual-mode signals [electrophysiological signal and dopamine (DA) concentration] in rat striatum. The SWCNTs/PEDOT:PSS nanocomposites were modified onto the MEAs, which significantly improved the electrical and electrochemical performances of the MEAs. The electrical performance of the modified MEAs with a low impedance (16.20 ± 1.68 kΩ) and a small phase delay (-27.76 ± 0.82°) enabled the MEAs to detect spike firing with a high signal-to-noise ratio (> 3). The electrochemical performance of the modified MEAs with a low oxidation potential (160 mV), a low detection limit (10 nM), high sensitivity (217 pA/μM), and a wide linear range (10 nM-72 μM) met the specific requirements for DA detection in vivo. The anesthetic effect of isoflurane was mediated by inhibiting the spike firing of D2_SPNs (spiny projection neurons expressing the D2-type DA receptor) and the broadband oscillation rhythm of the local field potential (LFP). Therefore, the spike firing rate of D2_SPNs and the power of LFP could reflect the degree of isoflurane anesthesia together. During the isoflurane anesthesia-induced death procedure, we found that electrophysiological activities and DA release were strongly inhibited, and changes in the DA concentration provided more details regarding this procedure. The dual-mode recording MEA provided a detection method for the degree of isoflurane anesthesia and a prediction method for fatal overdose isoflurane anesthesia.
Collapse
Affiliation(s)
- Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huabing Yin
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. MICROMACHINES 2021; 12:mi12060659. [PMID: 34205055 PMCID: PMC8228658 DOI: 10.3390/mi12060659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) is a form of refractory focal epilepsy, which includes a latent period and a chronic period. Microelectrode arrays capable of multi-region detection of neural activities are important for accurately identifying the epileptic focus and pathogenesis mechanism in the latent period of TLE. Here, we fabricated multi-shank MEAs to detect neural activities in the DG, hilus, CA3, and CA1 in the TLE rat model. In the latent period in TLE rats, seizures were induced and changes in neural activities were detected. The results showed that induced seizures spread from the hilus and CA3 to other areas. Furthermore, interneurons in the hilus and CA3 were more excited than principal cells and exhibited rhythmic oscillations at approximately 15 Hz in grand mal seizures. In addition, the power spectral density (PSD) of neural spikes and local field potentials (LFPs) were synchronized in the frequency domain of the alpha band (9–15 Hz) after the induction of seizures. The results suggest that fabricated MEAs have the advantages of simultaneous and precise detection of neural activities in multiple subregions of the hippocampus. Our MEAs promote the study of cellular mechanisms of TLE during the latent period, which provides an important basis for the diagnosis of the lesion focus of TLE.
Collapse
|