1
|
Chai L, Li R, Sun Y, Zhou K, Pan J. MOF-derived Carbon-Based Materials for Energy-Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413658. [PMID: 39791306 DOI: 10.1002/adma.202413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Ma Y, Li L, Zhu Y, Zhu Y, Lian R, Zhang W. Construction of N-doped carbon encapsulated CoP hollow nanofibers as multifunctional electrode materials for potassium-ion and lithium-sulfur batteries. J Colloid Interface Sci 2024; 673:504-516. [PMID: 38879992 DOI: 10.1016/j.jcis.2024.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Herein, a composite of N-doped carbon coated phosphating cobalt hollow nanofibers (N/C@CoP-HNFs) was synthesized by electrospinning, phosphating, and carbon coating processes. When employed as multifunctional electrode materials for potassium-ion batteries (PIBs) and lithium-sulfur (Li-S) batteries, the N/C@CoP-HNFs demonstrated notable electrochemical properties. Specifically, it delivered an initial specific capacity of 420.4 mA h g-1 at a current density of 100 mA g-1, with a sustained capacity of 190.8 mA h g-1 after 200 cycles in PIBs, and a specific capacity of 1448 mA h g-1 at a current density of 0.5C in Li-S batteries, which is considered relatively high for these types of battery technology. This good performance may due to the combination of the carbon nitrogen layer and cobalt phosphide bilayer hollow tube structure, which is conducive to telescoping the diffusion length of ions and electrons and buffer volume variation, and effectively inhibits the shuttle effect. Density functional theory (DFT) calculations were also used to explore the energy storage mechanism of the material. The possible adsorption sites and corresponding adsorption energy of K+ were analyzed, and the advantages of the material were explored by calculating the diffusion barrier and state density. The theoretical simulations further validated the strong adsorption capability of CoP for polysulfides. This work is expected to provide new ideas for new energy storage materials.
Collapse
Affiliation(s)
- Yueyue Ma
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China.
| | - Yiman Zhu
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Yajing Zhu
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Ruqian Lian
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China.
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
3
|
Feng P, Wu Q, Rodriguez Ayllon Y, Lu Y. Precisely Designed Ultra-Small CoP Nanoparticles-Decorated Hollow Carbon Nanospheres as Highly Efficient Host in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202401345. [PMID: 38837813 DOI: 10.1002/chem.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Designing porous carbon materials with metal phosphides as host materials holds promise for enhancing the cyclability and durability of lithium-sulfur (Li-S) batteries by mitigating sulfur poisoning and exhibiting high electrocatalytic activity. Nevertheless, it is urgent to precisely control the size of metal phosphides to further optimize the polysulfide conversion reaction kinetics of Li-S batteries. Herein, a subtlety regulation strategy was proposed to obtain ultra-small CoP nanoparticles-decorated hollow carbon nanospheres (CoP@C) by using spherical polyelectrolyte brush (SPB) as the template with stabilizing assistance from polydopamine coating, which also works as carbon source. Leveraging the electrostatic interaction between SPB and Co2+, ultra-small Co particles with sizes measuring 5.5±2.6 nm were endowed after calcination. Subsequently, through a gas-solid phosphating process, these Co particles were converted into CoP nanoparticles with significantly finer sizes (7.1±3.1 nm) compared to state-of-the-art approaches. By uniformly distributing the electrocatalyst nanoparticles on hollow carbon nanospheres, CoP@C facilitated the acceleration of Li-ion diffusion and enhanced the conversion reaction kinetics of polysulfides through adsorption-diffusion synergy. As a result, Li-S batteries utilizing the CoP@C/S cathode demonstrated an initial specific discharge capacity of 850.0 mAh g-1 at 1.0 C, with a low-capacity decay rate of 0.03 % per cycle.
Collapse
Affiliation(s)
- Ping Feng
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Qingping Wu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yael Rodriguez Ayllon
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Yan Lu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena, 07743, Germany
| |
Collapse
|
4
|
Chen K, Lin Z, Zhang G, Zheng J, Fan Z, Xiao L, Xu Q, Xu J. Efficient Host Materials for Lithium-Sulfur Batteries: Ultrafine CoP Nanoparticles in Black Phosphorus-Carbon Composite. CHEMSUSCHEM 2024; 17:e202400339. [PMID: 38440923 DOI: 10.1002/cssc.202400339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The pursuit of efficient host materials to address the sluggish redox kinetics of sulfur species has been a longstanding challenge in advancing the practical application of lithium-sulfur batteries. In this study, amorphous carbon layer loaded with ultrafine CoP nanoparticles prepared by a one-step in situ carbonization/phosphating method to enhance the inhibition of 2D black phosphorus (BP) on LiPSs shuttle. The carbon coating layer facilitates accelerated electron/ion transport, enabling the active involvement of BP in the conversion of soluble lithium polysulfides (LiPSs). Concurrently, the ultra-fine CoP nanoparticles enhance the chemical anchoring ability and introduce additional catalytic sites. As a result, S@BP@C-CoP electrodes demonstrate exemplary cycling stability (with a minimal capacity decay of 0.054 % over 500 cycles at 1 C) and superior rate performance (607.1 mAh g-1 at 5 C). Moreover, at a sulfur loading of 5.5 mg cm-2, the electrode maintains an impressive reversible areal capacity of 5.45 mAh cm-2 after 50 cycles at 0.1 C. This research establishes a promising approach, leveraging black phosphorus-based materials, for developing high-efficiency Li-S batteries.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Zihao Lin
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Guodong Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Jiangxin Zheng
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Liangping Xiao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Guan B, Gao X, Wang Z, Sun K. A review of metal phosphides with catalytic effects in Li-S batteries: boosting the redox kinetics. NANOSCALE 2024; 16:11005-11018. [PMID: 38774955 DOI: 10.1039/d4nr01520g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Lithium-sulfur batteries (Li-S batteries) are being widely studied as promising energy-storage solutions for the next generation owing to their excellent properties including high energy density, eco-friendliness, and low cost. Nevertheless, drawbacks, especially the severe "shuttle effect" and slow transformation of polysulfides, hinder the road to commercialization of Li-S batteries. The functional utilization of metal compounds in Li-S batteries has been verified, such as enhancing the conductivity, adsorption of lithium polysulfides (LPSs) and improving the kinetics of electrode processes. Benefiting from the outstanding catalytic capability and relatively good conductivity, metal phosphides have gradually received intense attention over the past few years. Consequently, significant progress has been achieved in the optimization of phosphides for Li-S batteries in recent years. This review introduces the application of metal phosphides in Li-S batteries from the aspects of their own characteristics, material structure design, and material interface control. The aim of this review is to enhance the understanding of the operational mechanism of metal phosphides and provide guidance for the development of Li-S batteries.
Collapse
Affiliation(s)
- Bin Guan
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Inistitute of Technology, Beijing 100081, P. R. China.
| | - Xiaotian Gao
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Inistitute of Technology, Beijing 100081, P. R. China.
| | - Zhenhua Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Inistitute of Technology, Beijing 100081, P. R. China.
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Inistitute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
6
|
Gao R, Tian LY, Wang T, Li HJ, Chen P, Yan TY, Gao XP. Surface-Phosphided Metal Oxide Microspheres as Catalytic Host of Sulfur to Enhance the Performance of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21943-21952. [PMID: 38635833 DOI: 10.1021/acsami.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy density secondary batteries due to their high theoretical energy density of 2600 Wh kg-1. However, the sluggish kinetics and severe "shuttle effect" of polysulfides are the well-known barriers that hinder their practical applications. A carefully designed catalytic host of sulfur may be an effective strategy that not only accelerates the conversion of polysulfides but also limit their dissolution to mitigate the "shuttle effect." Herein, in situ surface-phosphided Ni0.96Co0.03Mn0.01O (p-NCMO) oxide microspheres are prepared via gas-phase phosphidation as a catalytic host of sulfur. The as-prepared unique heterostructured microspheres, with enriched surface-coated metal phosphide, exhibit superior synergistic effect of catalytic conversion and absorption of the otherwise soluble intermediate polysulfides. Correspondingly, the sulfur cathode exhibits excellent electrochemical performance, including a high initial discharge capacity (1162 mAh gs-1 at 0.1C), long cycling stability (491 mAh gs-1 after 1000 cycles at 1C), and excellent rate performance (565 mAh gs-1 at 5C). Importantly, the newly prepared sulfur cathode shows a high areal capacity of 4.0 mAh cm-2 and long cycle stability under harsh conditions (high sulfur loading of 5.3 mg cm-2 and lean electrolyte/sulfur ratio of 5.8 μL mg-1). This work proposes an effective strategy to develop the catalytic hosts of sulfur for achieving high-performance Li-S batteries via surface phosphidation.
Collapse
Affiliation(s)
- Rui Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li-Yuan Tian
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Wang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong-Jin Li
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Chen
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian-Ying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Sun H, Jia X, Cao J, Chen S, Chen Y, Lin H. Oxygen vacancies synergistic cobalt phosphide electron bridge modulated bismuth oxychloride/carbon nitride Z-scheme junction for efficient carbon dioxide reduction coupled with tetracycline oxidation. J Colloid Interface Sci 2024; 661:150-163. [PMID: 38295697 DOI: 10.1016/j.jcis.2024.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/27/2024]
Abstract
Although great progress has been made with respect to electron bridges, the electron mobility of the state-of-the-art electron bridges is far from satisfactory because of weak electrical conductivity. To overcome the above issue, cobalt phosphide (CoP), as a model electron bridge, was modified by superficial oxygen vacancies (OVs) and embedded into a defective bismuth oxychloride/carbon nitride (BiO1-xCl/g-C3N4) Z-scheme heterojunction to obtain atomic-level insights into the effect of surface OVs on CoP electron bridges. Compared to BiO1-xCl/g-C3N4 and bismuth oxychloride/cobalt phosphide/carbon nitride (BiOCl/CoP/g-C3N4) composites, the defective bismuth oxychloride/cobalt phosphide/carbon nitride (BiO1-xCl/CoP/g-C3N4) heterojunction exhibited remarkable photocatalytic redox performance, indicating that the surface OVs-assisted CoP electron bridge effectively boosted electrical conductivity and yielded ultrafast electron transfer rates. The theoretical and experimental results demonstrate that the surface OVs play a critical role in improving the electrical conductivity of the CoP electron bridge, thereby accelerating electron mobility. This research provides insights into interfacial OVs-modified transition metal phosphide (TMP) electron bridges and their potential application in heterojunctions for energy crisis mitigation and environmental remediation.
Collapse
Affiliation(s)
- Haoyu Sun
- Key Laboratory of Green and Precise Synthetic and Applications, Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Clean Energy and Green Cycle, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xuemei Jia
- Key Laboratory of Green and Precise Synthetic and Applications, Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Clean Energy and Green Cycle, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic and Applications, Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Clean Energy and Green Cycle, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic and Applications, Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Clean Energy and Green Cycle, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic and Applications, Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Clean Energy and Green Cycle, Huaibei Normal University, Huaibei, Anhui 235000, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
8
|
Chen Z, Gan K, Peng Y, Yang Z, Yang Y. Bifunctional Additive for Lithium-Sulfur Batteries Based on the Metal-Phthalocyanine Complex. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55703-55712. [PMID: 37991881 DOI: 10.1021/acsami.3c12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
With extremely high specific capacity and high energy density, lithium-sulfur batteries (LSBs) have attracted enormous interest as promising candidates for energy storage devices. However, several problems, such as the shuttle effect and sluggish redox kinetics, hinder the successful realization of LSBs on an industrial scale. Therefore, designing an efficient electrode material to inhibit the shuttle effect and improve the reaction kinetics of polysulfides (LiPS) is of utmost significance. Herein, a bifunctional additive with excellent polysulfide adsorption and superior catalytic behavior is developed using the phthalocyanine-tetrasulfonic acid nickel complex tetrasodium salt (Ni-PCTs) additive. Ni-PCTs provide effective trapping of LiPS due to their abundant sulfonic acid groups. Moreover, Ni-PCTs exhibit effective catalytic conversion of LiPS due to the presence of N atoms in the phthalocyanine ring as well as the central Ni atoms. Consequently, the as-assembled LSBs, with a 10 wt % Ni-PCTs additive, exhibit a significant increase in specific capacities, such as the high initial specific capacity of 1283 mA h g-1 at 0.15 mA/cm2 and a stable specific capacity of 623 mA h g-1 after 400 cycles. The current study demonstrates the promise of metal phthalocyanines for sulfur cathodes, opening up avenues for further research and development of LSBs.
Collapse
Affiliation(s)
- Zhuzuan Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou 510640, China
| | - Kang Gan
- School of Physical Science and Engineering, Beijing Jiaotong University, Shangyuan Village, Haidian District, Beijing 100091, China
| | - Yuehai Peng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Wang F, Han Y, Xu R, Li A, Feng X, Lv S, Wang T, Song L, Li J, Wei Z. Establishing Transition Metal Phosphides as Effective Sulfur Hosts in Lithium-Sulfur Batteries through the Triple Effect of "Confinement-Adsorption-Catalysis". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303599. [PMID: 37330660 DOI: 10.1002/smll.202303599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Structurally optimized transition metal phosphides are identified as a promising avenue for the commercialization of lithium-sulfur (Li-S) batteries. In this study, a CoP nanoparticle-doped hollow ordered mesoporous carbon sphere (CoP-OMCS) is developed as a S host with a "Confinement-Adsorption-Catalysis" triple effect for Li-S batteries. The Li-S batteries with CoP-OMCS/S cathode demonstrate excellent performance, delivering a discharge capacity of 1148 mAh g-1 at 0.5 C and good cycling stability with a low long-cycle capacity decay rate of 0.059% per cycle. Even at a high current density of 2 C after 200 cycles, a high specific discharge capacity of 524 mAh g-1 is maintained. Moreover, a reversible areal capacity of 6.56 mAh cm-2 is achieved after 100 cycles at 0.2 C, despite a high S loading of 6.8 mg cm-2 . Density functional theory (DFT) calculations show that CoP exhibits enhanced adsorption capacity for sulfur-containing substances. Additionally, the optimized electronic structure of CoP significantly reduces the energy barrier during the conversion of Li2 S4 (L) to Li2 S2 (S). In summary, this work provides a promising approach to optimize transition metal phosphide materials structurally and design cathodes for Li-S batteries.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Shengyao Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - LeLe Song
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing, 401331, P. R. China
| |
Collapse
|
10
|
Xu J, Ao J, Xie Y, Zhou Y, Wang X. Beaded CoSe 2-C Nanofibers for High-Performance Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2492. [PMID: 37686998 PMCID: PMC10489726 DOI: 10.3390/nano13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as highly promising energy storage devices due to their high theoretical specific capacity and high energy density. Nevertheless, the commercial application of Li-S batteries is still restricted by poor electrochemical performance. Herein, beaded nanofibers (BNFs) consisting of carbon and CoSe2 nanoparticles (CoSe2/C BNFs) were prepared by electrospinning combined with carbonization and selenization. Benefitting from the synergistic effect of physical adsorption and chemical catalysis, the CoSe2/C BNFs can effectively inhibit the shuttle effect of lithium polysulfides and improve the rate performance and cycle stability of Li-S batteries. The three-dimensional conductive network provides a fast electron and ion transport pathway as well as sufficient space for alleviating the volume change. CoSe2 can not only effectively adsorb the lithium polysulfides but also accelerate their conversion reaction. The CoSe2/C BNFs-S cathode has a high reversible discharge specific capacity of 919.2 mAh g-1 at 0.1 C and presents excellent cycle stability with a low-capacity decay rate of 0.05% per cycle for 600 cycles at 1 C. The combination of the beaded carbon nanofibers and polar metal selenides sheds light on designing high-performance sulfur-based cathodes.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (J.X.); (J.A.); (Y.X.); (Y.Z.)
| | - Juan Ao
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (J.X.); (J.A.); (Y.X.); (Y.Z.)
| | - Yonghui Xie
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (J.X.); (J.A.); (Y.X.); (Y.Z.)
| | - Yumei Zhou
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (J.X.); (J.A.); (Y.X.); (Y.Z.)
| | - Xinghui Wang
- Institute of Micro-Nano Devices and Solar Cells, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (J.X.); (J.A.); (Y.X.); (Y.Z.)
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213000, China
| |
Collapse
|
11
|
Huang T, Zhang G, Chen R, Lin S, Zhou H, Li J, Chung LH, Hu X, Yu L, He J. Donor-Acceptor Conjugated Microporous Polymer toward Enhanced Redox Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21075-21085. [PMID: 37079721 DOI: 10.1021/acsami.3c01558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conjugated microporous polymers (CMPs) with porous structure and rich polar units are favorable for high-performance lithium-sulfur (Li-S) batteries. However, understanding the role of building blocks in polysulfide catalytic conversion is still limited. In this work, two triazine-based CMPs are constructed by electron-accepting triazine with electron-donating triphenylbenzene (CMP-B) or electron-accepting triphenyltriazine (CMP-T), which can grow on a conductive carbon nanotube (CNT) to serve as separator modifiers for Li-S batteries. CMP-B@CNT features faster ion transportation than the counterpart of CMP-T@CNT. More importantly, compared with acceptor-acceptor (A-A) CMP-T, donor-acceptor (D-A) CMP-B possesses a higher degree of conjugation and a narrower band gap, which are conducive to the electron transfer along the polymer skeleton, thus accelerating the sulfur redox kinetics. Consequently, the CMP-B@CNT functional separator endows Li-S cells with an outstanding initial capacity of 1371 mAh g-1 at 0.1 C and favorable cycling stability with a capacity degradation rate of 0.048% per cycle at 1 C for 800 cycles. This work provides insight into the rational design of efficient catalysts for advanced Li-S batteries.
Collapse
Affiliation(s)
- Tian Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Gengyuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangjun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hujing Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangtao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Sun Q, Zhang Y, Zhou H, Ma C, Zhang Y, Wang J, Qiao W, Ling L. Boosting polysulfide confinement and redox kinetics via ZnSe/NC@rGO as separator modifier for high-performance lithium-sulfur batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Hu X, Huang T, Zhang G, Lin S, Chen R, Chung LH, He J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Fang M, Huang Q, Ma L, Xu J, Kang Q, Cao Y, Hu S, Zhang X, Niu D. Hierarchical porous carbon nanofibers embedded with ultrafine Nb2O5 nanocrystals for polysulfide-trapping-conversion Li-S batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Huang Q, Xu J, Fang M, Ma L, Cao Y, Fan C, Hu S, Zhang X, Niu D. Realizing Li−S Batteries with Efficient Polysulfide Trapping and Conversion by using a High‐Nitrogen‐Content‐Doped Fe−N−C Porous Carbon Nanosheet‐Modified Separator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qigang Huang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jie Xu
- School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 China
| | - Minxiang Fang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Lianbo Ma
- School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 China
| | - Yongjie Cao
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University Shanghai 200433 China
| | - Chuanjie Fan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dongfang Niu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
16
|
Shan J, Wang W, Zhang B, Wang X, Zhou W, Yue L, Li Y. Unraveling the Atomic-Level Manipulation Mechanism of Li 2 S Redox Kinetics via Electron-Donor Doping for Designing High-Volumetric-Energy-Density, Lean-Electrolyte Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204192. [PMID: 36202626 PMCID: PMC9685476 DOI: 10.1002/advs.202204192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Indexed: 05/04/2023]
Abstract
Designing dense thick sulfur cathodes to gain high-volumetric/areal-capacity lithium-sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li2 S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li2 S redox kinetics of CoP/MXene catalyst via electron-donor Cu doping. Meanwhile a dense S/Cu0.1 Co0.9 P/MXene cathode (density = 1.95 g cm-3 ) is constructed, which presents a large volumetric capacity of 1664 Ah L-1 (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm-2 (lean electrolyte of 5.0 µL mgs -1 ) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron-donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens CoS bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li2 S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li2 S nucleation and dissolution, boosting Li2 S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic-level manipulation mechanism of Li2 S redox kinetics and provides dependable principles for designing high-volumetric-energy-density, lean-electrolyte LSBs through integrating bidirectional electro-catalysts with manipulated Li2 S redox and dense-sulfur engineering.
Collapse
Affiliation(s)
- Jiongwei Shan
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Wei Wang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Bing Zhang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Xinying Wang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Weiliang Zhou
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Liguo Yue
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Yunyong Li
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| |
Collapse
|
17
|
Lan B, Zhang X, Lu J, Wei C, Wang Y, Wen G. One-step synthesis of core-shell CoP@ N, P co-doped porous carbon sheet + CNTs: Boosting high-rate/long-life lithium storage via triple-carbon synergistic effects. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Duan D, Xing C, Chen K, Zhou X, Liu S. Design of CoP-CoO heterostructure to enhance the polysulfide redox conversion for lithium-sulfur batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Belgibayeva A, Rakhatkyzy M, Akylbek A, Taniguchi I. Synthesis of free‐standing CoxP/Co3(PO4)2/C composite nanofiber mats and their characteristics as multi‐functional interlayers for lithium–sulfur batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202200458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Adi Akylbek
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Chemical Science and Engiineering JAPAN
| | | |
Collapse
|
20
|
Hollow slightly oxidized CoP confined into flyover-type carbon skeleton with multiple channels as an effective adsorption-catalysis matrix for robost Li-S batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Bharti VK, Pathak AD, Sharma CS, Khandelwal M. Ultra-high-rate lithium-sulfur batteries with high sulfur loading enabled by Mn2O3-carbonized bacterial cellulose composite as a cathode host. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Liu L, Li Y, Zhang Y, Qiao Z, Lin L, Yan X, Meng Z, Huang Y, Lin J, Wang L, Sa B, Xie Q, Peng DL. CoP@C with chemisorption-catalysis effect toward lithium polysulfides as multifunctional interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Wang X, Meng L, Liu X, Yan Z, Liu W, Deng N, Wei L, Cheng B, Kang W. Cobalt-Doping of Molybdenum Phosphide Nanofibers for Trapping-Diffusion-Conversion of Lithium Polysulfides Towards High-Rate and Long-Life Lithium-Sulfur Batteries. J Colloid Interface Sci 2022; 628:247-258. [DOI: 10.1016/j.jcis.2022.07.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
|
24
|
Luo Y, Fan Y, Wang S, Chen Q, Ali A, Zhu J, Kang Shen P. Cobalt phosphide embedded in a 3D carbon frame as a sulfur carrier for high-performance lithium-sulfur batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zhang W, Xu B, Zhang L, Li W, Li S, Zhang J, Jiang G, Cui Z, Song H, Grundish N, Shi K, Zhang B, Fan Y, Pan F, Liu Q, Du L. Co 4 N-Decorated 3D Wood-Derived Carbon Host Enables Enhanced Cathodic Electrocatalysis and Homogeneous Lithium Deposition for Lithium-Sulfur Full Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105664. [PMID: 34854562 DOI: 10.1002/smll.202105664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The sluggish kinetics of sulfur conversion in the cathode and the nonuniform deposition of lithium metal at the anode result in severe capacity decay and poor cycle life for lithium-sulfur (Li-S) batteries. Resolving these deficiencies is the most direct route toward achieving practical cells of this chemistry. Herein, a vertically aligned wood-derived carbon plate decorated with Co4 N nanoparticles host (Co4 N/WCP) is proposed that can serve as a host for both the sulfur cathode and the metallic lithium anode. This Co4 N/WCP electrode host drastically enhances the reaction kinetics in the sulfur cathode and homogenizes the electric field at the anode for the uniform lithium plating. Density functional theory calculations confirm the experimental observations that Co4 N/WCP provides a lower energy barrier for the polysulfide redox reaction in the cathode and a low adsorption energy for lithium deposition at the anode. Employing the Co4 N/WCP host at both electrodes in a S@Co4 N/WCP||Li@Co4 N/WCP full cell delivers a specific capacity of 807.9 mAh g-1 after 500 cycles at a 1 C rate. Additional experiments are performed with high areal sulfur loading of 4 mg cm-2 to demonstrate the viability of this strategy for producing practical Li-S cells.
Collapse
Affiliation(s)
- Weifeng Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Biyi Xu
- Material Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wei Li
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Shulian Li
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiaxi Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guoxing Jiang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Huiyu Song
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Nicholas Grundish
- Material Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kaixiang Shi
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bingkai Zhang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yan Fan
- Medical Devices Research & Testing Center of SCUT, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Li Du
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
26
|
Zhang M, Zhang Z, Li F, Mao H, Liu W, Ruan D, Jia X, Yang Y, Yu X. Reduced porous carbon/N-doped graphene nanocomposites for accelerated conversion and effective immobilization of lithium polysulfides in lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Gao G, Jia Y, Gao H, Shi W, Yu J, Yang Z, Dong Z, Zhao Y. New Covalent Triazine Framework Rich in Nitrogen and Oxygen as a Host Material for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50258-50269. [PMID: 34637260 DOI: 10.1021/acsami.1c15269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been widely considered as the next-generation energy storage system but hindered by the soluble polysulfide intermediate-induced shuttle effect. Doping heteroatoms was confirmed to enhance the affinity of polysulfide and the carbon host, release the shuttle effect, and improve the battery performance. To enhance the Lewis acidity and reinforce the interaction between polysulfide and the carbon skeleton, a novel covalent triazine framework (CTFO) was designed and fabricated by copolymerizing 2,4,6-triphenoxy-s-triazine and 2,4,6-trichloro-1,3,5-triazine through Friedel-Crafts alkylation. Polymerization led to triazine substitution on the para-position of the phenoxy groups of 2,4,6-triphenoxy-triazine and produced two-dimensional three-connected honeycomb nanosheets. These nanosheets were confirmed to exhibit packing in the AB style through the intralayer π-π interaction to form a three-dimensional layered network with micropores of 0.5 nm. The practical and simulated results manifested the enhanced polysulfide capture capability due to the abundant N and O heteroatoms in CTFO. The unique porous polar network endowed CTFO with improved Li-S battery performance with high Coulombic efficiency, rate capability, and cycling stability. The S@CTFO cathode delivered an initial discharge capacity of 791 mAh g-1 at 1C and retained a residual capacity of 512 mAh g-1 after 300 charge-discharge cycles with an attenuation rate of 0.117%. The present results confirmed that multiple heteroatom doping enhances the interaction between the porous polar CTF skeleton and polysulfide intermediates to improve the Li-S battery performance.
Collapse
Affiliation(s)
- Guowei Gao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yunling Jia
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiyan Gao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wenxiong Shi
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianguo Yu
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zitao Yang
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Department of College of Ecology and Resource Engineering, Wuyi University, Fujian 354300, China
| | - Zhenghong Dong
- Tianjin Sinoma Engineering Research Center Co. Ltd., Tianjin 300400, China
| | - Yongnan Zhao
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Department of College of Ecology and Resource Engineering, Wuyi University, Fujian 354300, China
| |
Collapse
|
28
|
Wen C, Du X, Wu F, Wu L, Li J, Liu G. Conductive Al-Doped ZnO Framework Embedded with Catalytic Nanocages as a Multistage-Porous Sulfur Host in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44389-44400. [PMID: 34495633 DOI: 10.1021/acsami.1c12808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries possess many practical challenges including the lithium polysulfide (LiPS) "shuttle effect" and their sluggish conversion kinetics. To address these issues, a unique hierarchical porous architecture, combining highly conductive ordered macroporous skeleton and embedded microporous particles is rationally designed as a dual-effective polysulfide immobilizer and conversion promoter. In this nanoporous architecture, Al-doped ZnO (AZO) acts as a conductive macroporous framework, profiting chemical anchoring of LiPS as well as facilitating electrolyte infiltration and ion diffusion; Co nanoparticle-anchored N-doped carbon (Co-NC) derived from CoZn-metal-organic framework is embedded in the macropores to further strengthen the LiPS adsorption, catalytically accelerating conversion kinetics of LiPS simultaneously. Consequently, the Co-NC@AZO/S cathode delivers a notable rate capability of 635.5 mA h g-1 at 5 C. A high area capacity of about 5.8 mA h cm-2 with a mass loading of 6.8 mg cm-2 is also achieved under a lean electrolyte (E/S = 5.7). Additionally, the Li-S pouch cells equipped with Co-NC@AZO can be extended to sulfur loading as high as 4.0 mg cm-2, delivering a superb capability of 897.5 mA h g-1 after 100 cycles. This work puts forward a design for stably cycled and practically viable Li-S batteries.
Collapse
Affiliation(s)
- Chenxu Wen
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaohang Du
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Feichao Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
29
|
Improved lithium storage performance of sulfur loaded by CMK-3 with a tailored hierarchical pore structure. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Chen Z, Hu Y, Liu W, Yu F, Yu X, Mei T, Yu L, Wang X. Three-Dimensional Engineering of Sulfur/MnO 2 Composites for High-Rate Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38394-38404. [PMID: 34370432 DOI: 10.1021/acsami.1c10958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a three-dimensional interconnected sulfur (3DIS) system is used to construct a cathode of the lithium-sulfur battery. Compared with the traditional methods of encapsulating sulfur, the 3DIS system serves as a framework to grow MnO2, which ensures a high sulfur content of 91.5 wt % (the ratio of sulfur/host was 10.8) and a uniform distribution of sulfur. Due to the synergistic effect of the 3D interconnected architecture and the uniform coating layer of polar MnO2, 3DIS@MnO2 (3DISMO) delivers a capacity of 891 mA h g-1 after 900 cycles at 1 C. Even at a rate of 10 C, a capacity decay rate of 0.061% per cycle is achieved.
Collapse
Affiliation(s)
- Zihe Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yuxin Hu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Fang Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xuefeng Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Li Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
31
|
Wang Z, Xu X, Liu Z, Zhang D, Yuan J, Liu J. Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium-Sulfur Batteries. Chemistry 2021; 27:13494-13512. [PMID: 34288172 DOI: 10.1002/chem.202101873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/11/2022]
Abstract
For the past few years, a new generation of energy storage systems with large theoretical specific capacity has been urgently needed because of the rapid development of society. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for novel battery systems, since their resurgence at the end of the 20th century Li-S batteries have attracted ever more attention, attributed to their notably high theoretical energy density of 2600 W h kg-1 , which is almost five times larger than that of commercial lithium-ion batteries (LIBs). One of the determining factors in Li-S batteries is how to design/prepare the sulfur cathode. For the sulfur host, the major technical challenge is avoiding the shuttling effect that is caused by soluble polysulfides during the reaction. In past decades, though the sulfur cathode has developed greatly, there are still some enormous challenges to be conquered, such as low utilization of S, rapid decay of capacity, and poor cycle life. This article spotlights the recent progress and foremost findings in improving the performance of Li-S batteries by employing multifunctional metal phosphides as host materials. The current state of development of the sulfur electrode of Li-S batteries is summarized by emphasizing the relationship between the essential properties of metal phosphide-based hybrid nanomaterials, the chemical reaction with lithium polysulfides and the latter's influence on electrochemical performance. Finally, trends in the development and practical application of Li-S batteries are also pointed out.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xijun Xu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhengbo Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dechao Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jujun Yuan
- School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.,School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| |
Collapse
|
32
|
Zhang K, Zhao Z, Ren Z, Wang X. Yolk‐Shell NiCo
2
P
X
as a Bidirectional Catalyst for Liquid‐Solid Processes in Advanced Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenxin Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhaowei Ren
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
- Shanxi Key Laboratory of New Energy Materials and Devices Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|