1
|
Yang F, Gong S, Hu D, Chen L, Wang W, Cheng B, Yang J, Li B, Wang X. The biological response of pH-switch-based gold nanoparticle-composite polyamino acid embolic material. NANOSCALE 2024; 16:10448-10457. [PMID: 38752569 DOI: 10.1039/d4nr00989d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With continuous advances in medical technology, non-invasive embolization has emerged as a minimally invasive treatment, offering new possibilities in cancer therapy. Fluorescent labeling can achieve visualization of therapeutic agents in vivo, providing technical support for precise treatment. This paper introduces a novel in situ non-invasive embolization composite material, Au NPs@(mPEG-PLGTs), created through the electrostatic combination of L-cysteine-modified gold nanoparticles (Au NPs) and methoxy polyethylene glycol amine-poly[(L-glutamic acid)-(L-tyrosine)] (mPEG-PLGTs). Experiments were undertaken to confirm the biocompatibility, degradability, stability and performance of this tumor therapy. The research results demonstrated a reduction in tumor size as early as the fifth day after the initial injection, with a significant 90% shrinkage in tumor volume observed after a 20-day treatment cycle, successfully inhibiting tumor growth and exhibiting excellent anti-tumor effects. Utilizing near-infrared in vivo imaging, Au NPs@(mPEG-PLGTs) displayed effective fluorescence tracking within the bodies of nude BALB-c mice. This study provides a novel direction for the further development and innovation of in situ non-invasive embolization in the field, highlighting its potential for rapid, significant therapeutic effects with minimal invasiveness and enhanced safety.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Shiwen Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Die Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Wenyuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, P.R.China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P.R.China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R.China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P.R.China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, P.R.China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P.R.China
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430060, P.R.China
| |
Collapse
|
2
|
Liu X, Zhou X, Li X, Wei Y, Wang T, Liu S, Yang H, Sun X. Saliva Analysis Based on Microfluidics: Focusing the Wide Spectrum of Target Analyte. Crit Rev Anal Chem 2023:1-23. [PMID: 38039145 DOI: 10.1080/10408347.2023.2287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Yoon J, Kim DH, Park SG, Kim SH. Micromolding-Assisted Production of SERS-Active Microcylinders for Size- and Charge-Selective Molecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38016084 DOI: 10.1021/acsami.3c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an effective technique for amplifying the Raman signal of molecules by using metal nanostructures. However, these metal surfaces are susceptible to contamination by undesirable adhesives in complex mixtures, typically necessitating a time-consuming and costly sample pretreatment. In order to circumvent this, metal nanoparticles have been uniformly embedded within microgels by using microfluidics. In this work, we introduce a simple, scalable micromolding method for creating SERS-active cylindrical microgels designed to eliminate the need for pretreatment. These microcylinders are created through the simultaneous photoreduction and photo-cross-linking of precursor solutions. These solutions are optimized for consistent, high-intensity Raman signals as well as molecular size and charge selectivity. A sequential micromolding method is employed to design dual-compartment microcylinders, offering additional functionalities such as optical encoding, magnetoresponsiveness, and dual-charge selectivity. These SERS-active microcylinders provide robust Raman signals of small molecules, even in the presence of adhesive proteins, without compromising sensitivity. To demonstrate this capability, we directly detect pyocyanin in saliva and tartrazine in whole milk without any need for sample pretreatment.
Collapse
Affiliation(s)
- Jiwon Yoon
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Ye Z, Yao H, Zhang Y, Su A, Sun D, Ye Y, Zhou J, Xu S. Pretreatment-free, on-site separation and sensitive identification of methamphetamine in biological specimens by SERS-active hydrogel microbeads. Anal Chim Acta 2023; 1263:341285. [PMID: 37225337 DOI: 10.1016/j.aca.2023.341285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
The worldwide abuse of illicit drugs led to severe consequences for human health, and society environment. Therefore, urgently required are effective and efficient on-site detection methods for illicit drugs of interest in various matrices, e.g., police samples, biofluids, and hairs. Although surface-enhanced Raman spectroscopy (SERS) shows power in many analytical fields, the cumbersome pretreatment of various matrices restricts its use in the easy-to-operate and on-site detection of illicit drugs. To address this problem, we adopted pore-size selectivity SERS-active hydrogel microbeads, whose meshes are adjustable to allow small molecules to access and to exclude large molecules. Meanwhile, Ag nanoparticles were uniformly dispersed and wrapped in the hydrogel matrix, providing excellent SERS performances with high sensitivity, reproducibility, and stability. By using these SERS hydrogel microbeads, one of the illicit drugs, methamphetamine (MAMP), can be rapidly and reliably detected in various biological specimens (blood, saliva, and hair) without sample pretreatment. The minimum detectable concentration is 0.1 ppm for MAMP in three biological specimens with a linear range of 0.1-100 ppm, which is lower than the maximum allowable level of 0.5 ppm set by the department of the health and human service. The SERS detection results were consistent with the gas chromatographic (GC) data. Thanks to its operational simplicity, fast response, high throughput and low cost, our established SERS hydrogel microbeads can be used as a sensing platform for facile analysis of illicit drugs through simultaneous separation, preconcentration, and optical detection, which shall be provided practically for front-line narcotics squad and resistance to the overwhelmed drug abuses.
Collapse
Affiliation(s)
- Zelin Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Huifang Yao
- Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, 430035, PR China
| | - Yue Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ailing Su
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Dan Sun
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Yong Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Wang Q, Sun D, Ma X, Huang R, Xu J, Xu X, Cai L, Xu L. Surface enhanced Raman scattering active substrate based on hydrogel microspheres for pretreatment-free detection of glucose in biological samples. Talanta 2023; 260:124657. [PMID: 37187030 DOI: 10.1016/j.talanta.2023.124657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Determining glucose in biological samples is tedious and time-consuming due to sample pretreatment. The sample is usually pretreated to remove lipids, proteins, hemocytes and other sugars that interfere with glucose detection. A surface-enhanced Raman scattering (SERS) active substrate based on hydrogel microspheres has been developed to detect glucose in biological samples. Due to the specific catalytic action of glucose oxidase (GOX), the high selectivity of detection is guaranteed. The hydrogel substrate prepared by microfluidic droplets technology protects the silver nanoparticles from the surrounding environment and improves the stability and reproducibility of the assay. In addition, the hydrogel microspheres have size-adjustable pores that selectively allow small molecules to pass through. The pores block the entry of large molecules, such as impurities, enabling glucose detection through glucose oxidase etching without sample pretreatment. This hydrogel microsphere-SERS platform is highly sensitive and enables reproducible detection of different glucose concentrations in biological samples. The use of SERS to detect glucose provides clinicians with new diagnostic methods for diabetes and a new application opportunity for SERS-based molecular detection techniques.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China; Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Atta S, Vo-Dinh T. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Anal Chem 2023; 95:2690-2697. [PMID: 36693215 PMCID: PMC9909734 DOI: 10.1021/acs.analchem.2c03210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
There is a critical need for sensitive rapid point-of-care detection of bacterial infection biomarkers in complex biological fluids with minimal sample preparation, which can improve early-stage diagnosis and prevent several bacterial infections and fatal diseases. A solution-based surface-enhanced Raman scattering (SERS) detection platform has long been sought after for low cost, rapid, and on-site detection of analyte molecules, but current methods still exhibit poor sensitivity. In this study, we have tuned the morphology of the surfactant-free gold nanostars (GNSs) to achieve sharp protruding spikes for maximum SERS enhancement. We have controlled the GNS spike morphologies and optimized SERS performance in the solution phase using para-mercaptobenzoic acid as an SERS probe. To illustrate the potential for point-of-care applications, we have utilized a portable Raman instrument for measurements. For pathogenic agent sensing applications, we demonstrated rapid and sensitive detection of the toxin biomarker pyocyanin (PYO) used as the bacterial biomarker model system. Pyocyanin is a toxic compound produced and secreted by the common water-borne Gram-negative bacterium Pseudomonas aeruginosa, a pathogen known for advanced antibiotic resistance and association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The limit of detection (LOD) achieved for PYO was 0.05 nM using sharp branched GNSs. Furthermore, as a proof of strategy, this SERS detection of PYO was performed directly in drinking water, human saliva, and human urine without any sample treatment pre-purification, achieving an LOD of 0.05 nM for drinking water and 0.4 nM for human saliva and urine. This work provides a proof-of-principle demonstration for the high sensitivity detection of the bacterial toxin biomarker with minimal sample preparation: the "mix and detect" detection of the GNS platform is simple, robust, and rapid, taking only 1-2 min for each measurement. Overall, our SERS detection platform shows great potential for point-of-need sensing and point-of-care diagnostics in biological fluids.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Nanoparticle–Hydrogel Based Sensors: Synthesis and Applications. Catalysts 2022. [DOI: 10.3390/catal12101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are hydrophilic three-dimensional (3D) porous polymer networks that can easily stabilize various nanoparticles. Loading noble metal nanoparticles into a 3D network of hydrogels can enhance the synergy of the components. It can also be modified to prepare intelligent materials that can recognize external stimuli. The combination of noble metal nanoparticles and hydrogels to produce modified or new composite materials has attracted considerable attention as to the use of these materials in sensors. However, there is limited review literature on nanoparticle–hydrogel-based sensors. This paper presents the detailed strategies of synthesis and design of the composites, and the latest applications of nanoparticle–hydrogel materials in the sensing field. Finally, the current challenges and future development directions of nanoparticle–hydrogel-based sensors are proposed.
Collapse
|
8
|
Chen C, Wang Y, Zhang H, Zhang H, Dong W, Sun W, Zhao Y. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact Mater 2022; 15:194-202. [PMID: 35386338 PMCID: PMC8940762 DOI: 10.1016/j.bioactmat.2021.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of diabetic wounds remains a great challenge for medical community. Here, we present a novel structural color supramolecular hydrogel patch for diabetic wound treatment. This hydrogel patch was created by using N-acryloyl glycinamide (NAGA) and 1-vinyl-1,2,4-triazole (VTZ) mixed supramolecular hydrogel as the inverse opal scaffold, and temperature responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel loaded with vascular endothelial cell growth factor (VEGF) as a filler. Supramolecular hydrogel renders hydrogel patch with superior mechanical properties, in which NAGA and VTZ also provide self-healing and antibacterial properties, respectively. Besides, as the existence of PNIPAM, the hydrogel patch was endowed with thermal-responsiveness property, which could release actives in response to temperature stimulus. Given these excellent performances, we have demonstrated that the supramolecular hydrogel patch could significantly enhance the wound healing process in diabetes rats by downregulating the expression of inflammatory factors, promoting collagen deposition and angiogenesis. Attractively, due to responsive optical property of inverse opal scaffold, the hydrogel patch could display color-sensing behavior that was suitable for the wound monitoring and management as well as guidance of clinical treatment. These distinctive features indicate that the presented hydrogel patches have huge potential values in biomedical fields.
Collapse
Affiliation(s)
- Canwen Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
9
|
Wei Z, Wang S, Hirvonen J, Santos HA, Li W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv Healthc Mater 2022; 11:e2200846. [PMID: 35678152 PMCID: PMC11468590 DOI: 10.1002/adhm.202200846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/24/2023]
Abstract
Micrometer-sized hydrogels are cross-linked three-dimensional network matrices with high-water contents and dimensions ranging from several to hundreds of micrometers. Due to their excellent biocompatibility and capability to mimic physiological microenvironments in vivo, micrometer-sized hydrogels have attracted much attention in the biomedical engineering field. Their biological properties and applications are primarily influenced by their chemical compositions and geometries. However, inhomogeneous morphologies and uncontrollable geometries limit traditional micrometer-sized hydrogels obtained by bulk mixing. In contrast, microfluidic technology holds great potential for the fabrication of micrometer-sized hydrogels since their geometries, sizes, structures, compositions, and physicochemical properties can be precisely manipulated on demand based on the excellent control over fluids. Therefore, micrometer-sized hydrogels fabricated by microfluidic technology have been applied in the biomedical field, including drug encapsulation, cell encapsulation, and tissue engineering. This review introduces micrometer-sized hydrogels with various geometries synthesized by different microfluidic devices, highlighting their advantages in various biomedical applications over those from traditional approaches. Overall, emerging microfluidic technologies enrich the geometries and morphologies of hydrogels and accelerate translation for industrial production and clinical applications.
Collapse
Affiliation(s)
- Zhenyang Wei
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Jouni Hirvonen
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
- Department of Biomedical EngineeringW.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity Medical Center Groningen/University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Wei Li
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
10
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|