1
|
Li XF, Su FY, Xie LJ, Tian YR, Yi ZL, Cheng JY, Chen CM. Carbon Corrosion Induced by Surface Defects Accelerates Degradation of Platinum/Graphene Catalysts in Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310940. [PMID: 38700049 DOI: 10.1002/smll.202310940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Graphene supported electrocatalysts have demonstrated remarkable catalytic performance for oxygen reduction reaction (ORR). However, their durability and cycling performance are greatly limited by Oswald ripening of platinum (Pt) and graphene support corrosion. Moreover, comprehensive studies on the mechanisms of catalysts degradation under 0.6-1.6 V versus RHE (Reversible Hydrogen Electrode) is still lacking. Herein, degradation mechanisms triggered by different defects on graphene supports are investigated by two cycling protocols. In the start-up/shutdown cycling (1.0-1.6 V vs. RHE), carbon oxidation reaction (COR) leads to shedding or swarm-like aggregation of Pt nanoparticles (NPs). Theoretical simulation results show that the expansion of vacancy defects promotes reaction kinetics of the decisive step in COR, reducing its reaction overpotential. While under the load cycling (0.6-1.0 V vs. RHE), oxygen containing defects lead to an elevated content of Pt in its oxidation state which intensifies Oswald ripening of Pt. The presence of vacancy defects can enhance the transfer of electrons from graphene to the Pt surface, reducing the d-band center of Pt and making it more difficult for the oxidation state of platinum to form in the cycling. This work will provide comprehensive understanding on Pt/Graphene catalysts degradation mechanisms.
Collapse
Affiliation(s)
- Xiong-Fei Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Yuan Su
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Li-Jing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yan-Ru Tian
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Lin Yi
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Jia-Yao Cheng
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Yuan H, Zheng J, Lu G, Zhang L, Yan T, Luo J, Wang Y, Liu Y, Guo T, Wang Z, Nai J, Tao X. Formation of 2D Amorphous Lithium Sulfide Enabled by Mo 2C Clusters Loaded Carbon Scaffold for High-Performance Lithium Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400639. [PMID: 38664988 DOI: 10.1002/adma.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.
Collapse
Affiliation(s)
- Huadong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianhui Zheng
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, 324000, China
| | - Gongxun Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jianmin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Ye KF, Xia YP, Li R, Liu BH, Li ZP. A novel insight into deterioration of heavily sulfur-loaded cathode in Li-S battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Ren Z, Zhao Z, Zhang K, Wang X, Wang Y. Electrochemical Behavior Promotion of Polysulfides by Cobalt Selenide/Carbon Cloth Interlayer in Lithium−Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhaowei Ren
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenxin Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Kun Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
- Shanxi Key Laboratory of New Energy Materials and Devices Taiyuan University of Technology Taiyuan 030024 PR China
| | - Yongzhen Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|