1
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wang Q, Song Y, Wu S, Lv J, Xiao Y, Ning Y, Tian H, Liu B. Dual Stimulus Responsive GO-Modified Tb-MOF toward a Smart Coating for Corrosion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29162-29176. [PMID: 38785388 DOI: 10.1021/acsami.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Smart-sensing coatings that exhibit multistimulus response, rapid indication, and reusability are in urgent need to effectively enhance the practicability of coatings while accurately detecting metal corrosion. In this work, a reusable corrosion self-reporting coating with multiple pH and Fe3+ stimulus responses was first constructed by the integration of a composite fluorescent probe into the resin matrix. This composite sensor was constructed by combining a lanthanide metal-organic framework (Ln-MOF) based on terbium and trimeric acid (H3BTC) with graphene oxide (GO) nanosheets (GO@Tb-BTC). The incorporation of GO formed a sea-urchin-like structure, thereby increasing the specific surface area and active sites of the probe. The coatings were characterized by using electrochemical impedance spectroscopy (EIS), visual observation, and fluorescence spectrophotometry. The surface morphology, wettability, and adhesion of the coating samples were analyzed using SEM, XPS, hydrostatic contact angle test, and an adhesion test. EIS measurements in 3.5 wt % NaCl solution for 72 h demonstrated the superior corrosion protection performance of the 0.3 wt %/GO@Tb-BTC/WEP coating compared to blank coating, with the charge-transfer resistance reaching 4.33 × 107 Ω·cm2, which was 9.5 times higher than that of the pure coating. The bright green fluorescence of GO@Tb-BTC/WEP coating exhibited a turn-off response when there was an excess of OH-/H+, but it demonstrated a reversible turn-on fluorescence when the ambient pH returned to neutral. Furthermore, such Fe3+-triggered fluorescence quenching responded to concentrations as low as 1 × 10-6 M. The fluorescence quenching rate of both intact and damaged coatings surpassed that of visual and EIS detection methods. Significantly, the fluorescence in scratches was effectively quenched within 25 min using 0.3 wt %/GO@Tb-BTC/WPU coating for visual observation. GO@Tb-BTC demonstrated exceptional corrosion self-reporting capabilities in both epoxy and polyurethane systems, making it a versatile option beyond single-coating applications.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yihan Song
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Wu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangming Lv
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Ning
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huayang Tian
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
4
|
Chen TL, Kong XJ, Dong XX, Mao ZJ, Kong FF, Xiao Q. A novel ratiometric sensor for fluorimetric and visual dual-mode detection of Al 3+ in environmental water based on the target-regulated formation of Eu MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2702-2706. [PMID: 38625145 DOI: 10.1039/d4ay00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, a novel ratiometric sensor for fluorimetric and smartphone-assisted visual detection of Al3+ in environmental water was developed based on the target-regulated formation of Eu metal-organic frameworks (Eu MOFs). By employing 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (Hepes), Eu3+ and tetracycline (TC) as raw materials, Eu MOFs with red emission were facilely synthesized through the coordination of Eu3+ with Hepes and TC. However, upon the introduction of Al3+, a higher affinity of TC towards Al3+ resulted in the formation of a TC-Al3+ complex with green fluorescence and inhibited the generation of Eu MOFs. This led to an increase in green fluorescence and a decrease in red fluorescence accompanied by the fluorescence color of the solution changing from red to green under the illumination of the UV lamp. Thus, a ratiometric sensor for fluorimetric and the smartphone-assisted visual detection of Al3+ was established. The ratiometric sensor exhibited high sensitivity for Al3+ detection with a detection limit of 0.14 μM for fluorescence detection and 1.21 μM for visual detection. Additionally, the proposed strategy was successfully applied to detect Al3+ in the environmental water samples with satisfactory results, indicating great application prospects for environmental monitoring.
Collapse
Affiliation(s)
- Tao-Li Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xin-Xin Dong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Zhi-Jie Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Fang-Fang Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
5
|
Paknia F, Roostaee M, Isaei E, Mashhoori MS, Sargazi G, Barani M, Amirbeigi A. Role of Metal-Organic Frameworks (MOFs) in treating and diagnosing microbial infections. Int J Biol Macromol 2024; 262:130021. [PMID: 38331063 DOI: 10.1016/j.ijbiomac.2024.130021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.
Collapse
Affiliation(s)
- Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Elham Isaei
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| | - Mahboobeh-Sadat Mashhoori
- Department of Chemistry, Faculty of Science, University of Birjand, P.O.Box 97175-615, Birjand, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran; Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Chen Z, Li L, Zhao Z, Zhu Y, Liu Z. Responsive luminescent silver-based metal-organic frameworks for highly sensitive and selective detection of hydrogen sulfide in biological system via a self-assembled headspace separation device. Talanta 2024; 267:125170. [PMID: 37690415 DOI: 10.1016/j.talanta.2023.125170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As a highly toxic gas pollutant and also an endogenous gaseous signaling molecule existing in a variety of physiological processes, the rapid and accurate in-field detection of hydrogen sulfide is of great concern. Nevertheless, two drawbacks as for the optical probes for H2S detection, taking about a long time to reach the optical signal balance or the low selectivity, always exist. Herein, by using a highly photoluminescent and H2S-stimuli responsive silver-based metal-organic frameworks (MOFs): Ag-BDC (BDC = 1, 4-benzene dicarboxylate), we demonstrated that the luminescence intensity of Ag-BDC MOFs was inversely proportional to the concentration of H2S due to the Ag-S coordination and the obstruction of ligand-to-metal charge transfer (LMCT) transition process, and there was a quick response time of below 3.0 min. Combined with a simple customized device to separate H2S from the sample, the selectivity of the method for H2S detection could be greatly improved, and no interference would be caused even if the other sulfur-containing species coexisted. The luminescence probe presented a favorable sensitivity within a linear range of 0.1-1000 μM along with a detection limit of 23.7 nM. When employed to assay the endogenous sulfide level in the human serum and mouse brain tissue, the approach showed recoveries from 96.3% to 102% with relative standard derivation (RSD) less than 2.0%. By the integration of the responsive luminescent silver-based MOFs with a simple self-assembled headspace separation device, obviously the present strategy could be beneficial to the development and design of the in-field fast H2S measurement, possessing particular advantages in biological systems to eliminate the potential interferences.
Collapse
Affiliation(s)
- Zhongxiu Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ling Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
8
|
Cui J, Zhang Y, Lun K, Wu B, He L, Wang M, Fang S, Zhang Z, Zhou L. Sensitive detection of Escherichia coli in diverse foodstuffs by electrochemical aptasensor based on 2D porphyrin-based COF. Mikrochim Acta 2023; 190:421. [PMID: 37773421 DOI: 10.1007/s00604-023-05978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
The two-dimensional porphyrin-based covalent organic framework (denoted by Tph-TDC-COF) was used as the sensitive layerto build an aptamer-based electrochemical sensor for the detection of Escherichia coli (E.coli). Tph-TDC-COF produced with 5,10,15,20-tetrakis(4-aminophenyl)-21H, 23H-porphine (Tph) and [2,2'-bithiophene]-2,5'-dicarbaldehyde (TDC) as building blocks exhibited a highly conjugated structure, outstanding conductivity, large specific surface area, and strong bioaffinity towards aptamers. The adoption of Tph-TDC-COF-modified electrode resulted in improved sensing performance and increased anchoring affinity toward the E.coli-targeted aptamer. Under optimal conditions, the Tph-TDC-COF-based electrochemical aptasensor demonstrated an extremely low detection limit of 0.17 CFU mL-1 for E.coli detection within a linear range of 10 to 1 × 108 CFU mL-1, accompanied by good stability, excellent reproducibility and regeneration ability, and wide practical applications. The current electrochemical aptasensing technique has the potential to be extended to detect different foodborne bacteria using specific aptamer, therefore widening the application of COFs in biosensing and food safety fields.
Collapse
Affiliation(s)
- Jing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yu Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Kan Lun
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Baiwei Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
9
|
Qiao J, Chen X, Xu X, Fan B, Guan YS, Yang H, Li Q. A metal-organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus. J Mater Chem B 2023; 11:8519-8527. [PMID: 37606203 DOI: 10.1039/d3tb01428b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Survival and infection of pathogenic bacteria, such as Staphylococcus aureus (S. aureus), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal-organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus. The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus, leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 103-1.05 × 107 CFU mL-1 and a detection limit of 12 CFU mL-1. Due to the unique high affinity of VAN to S. aureus, the nanoprobe shows high selectivity and sensitivity to S. aureus, even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.
Collapse
Affiliation(s)
- Jing Qiao
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xuanbo Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Xingliang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ben Fan
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying-Shi Guan
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
10
|
Xing G, Shang Y, Ai J, Lin H, Wu Z, Zhang Q, Lin JM, Pu Q, Lin L. Nanozyme-Mediated Catalytic Signal Amplification for Microfluidic Biosensing of Foodborne Bacteria. Anal Chem 2023; 95:13391-13399. [PMID: 37610722 DOI: 10.1021/acs.analchem.3c03232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Early detection of foodborne bacteria is urgently needed to ensure food quality and to avoid the outbreak of foodborne bacterial diseases. Here, a kind of metal-organic framework (Zr-MOF) modified with Pt nanoparticles (Pt-PCN-224) was designed as a peroxidase-like signal amplifier for microfluidic biosensing of foodborne bacteria. Taking Escherichia coli (E. coli) O157:H7 as a model, a linear range from 2.93 × 102 to 2.93 × 108 CFU/mL and a limit of detection of 2 CFU/mL were obtained. The whole detection procedure was integrated into a single microfluidic chip. Water, milk, and cabbage samples were successfully detected, showing consistency with the results of the standard culture method. Recoveries were in the range from 90 to 110% in spiked testing. The proposed microfluidic biosensor realized the specific and sensitive detection of E. coli O157:H7 within 1 h, implying broad prospects of MOF with biomimetic enzyme activities for biosensing.
Collapse
Affiliation(s)
- Gaowa Xing
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuting Shang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiebing Ai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
12
|
Hargol Zadeh S, Kashanian S, Nazari M. A Label-Free Carbohydrate-Based Electrochemical Sensor to Detect Escherichia coli Pathogenic Bacteria Using D-mannose on a Glassy Carbon Electrode. BIOSENSORS 2023; 13:619. [PMID: 37366984 DOI: 10.3390/bios13060619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Controlling water and food contamination by pathogenic organisms requires quick, simple, and low-cost methods. Using the affinity between mannose and type I fimbriae in the cell wall of Escherichia coli (E. coli) bacteria as evaluation elements compared to the conventional plate counting technique enables a reliable sensing platform for the detection of bacteria. In this study, a simple new sensor was developed based on electrochemical impedance spectroscopy (EIS) for rapid and sensitive detection of E. coli. The biorecogniton layer of the sensor was formed by covalent attachment of p-carboxyphenylamino mannose (PCAM) to gold nanoparticles (AuNPs) electrodeposited on the surface of a glassy carbon electrode (GCE). The resultant structure of PCAM was characterized and confirmed using a Fourier Transform Infrared Spectrometer (FTIR). The developed biosensor demonstrated a linear response with a logarithm of bacterial concentration (R2 = 0.998) in the range of 1.3 × 10 1~1.3 × 106 CFU·mL-1 with the limit of detection of 2 CFU·mL-1 within 60 min. The sensor did not generate any significant signals with two non-target strains, demonstrating the high selectivity of the developed biorecognition chemistry. The selectivity of the sensor and its applicability to analysis of the real samples were investigated in tap water and low-fat milk samples. Overall, the developed sensor showed to be promising for the detection of E. coli pathogens in water and low-fat milk due to its high sensitivity, short detection time, low cost, high specificity, and user-friendliness.
Collapse
Affiliation(s)
- Sakineh Hargol Zadeh
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| | - Maryam Nazari
- Faculty of Chemistry, Applied Chemistry Department, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
13
|
Xiong Y, Zeng X, Yan L, Wang Y, Lin Y, Ao K, Feng P, Xie Y, Chen P. Target Enzyme-Triggered Click Chemistry and Hybridization Chain Reaction for Fluorescence Nonculture Homogeneous Analysis of E. coli in Bloodstream Infections. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262009 DOI: 10.1021/acsami.3c04065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Escherichia coli is the major pathogen that causes bloodstream infections (BSI). It is critical to develop nonculture identification methods which can meet the urgent need of clinical diagnosis and treatment. In this study, we reported a homogeneous fluorescence E. coli analysis system using β-galactosidase (β-Gal) as the biomarker and double-stranded DNA-templated copper nanoparticles (dsDNA-Cu NPs) as the signal output. The product of the enzymatic hydrolysis reaction, p-aminophenol (PAP), could reduce Cu2+ to Cu+, triggering the alkyne-azido cycloaddition reaction (CuAAC). Subsequently, the hybrid chain reaction (HCR) was initiated, producing the dsDNA template used to generate Cu NPs in situ. The system achieved a wide linear range for β-Gal and E. coli 1-104 mU/L and 10-2-10 colony-forming unit (CFU)/mL, and a detection limit of 0.3 mU/L and 0.003 CFU/mL, respectively. 65 samples (45 blood and 20 urine) were collected to evaluate the clinical practicality. The results demonstrated remarkable area under the curve (AUC) values of 0.95 and 0.916 from uncultured urine and blood, respectively. It had 100% specificity and 83.3% sensitivity. The whole duration of the strategy was 3.5 h, which significantly reduced the turnaround time (TAT) and facilitated early BSI diagnosis to improve patients' prognosis. Our work had the potential to be an alternative to culture-based methods in clinics.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuling Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Keping Ao
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
15
|
Bhatt D, Singh S, Singhal N, Bhardwaj N, Deep A. Glyco-conjugated metal-organic framework biosensor for fluorescent detection of bacteria. Anal Bioanal Chem 2023; 415:659-667. [PMID: 36462049 DOI: 10.1007/s00216-022-04455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Metal-organic frameworks (MOFs) are hybrid materials constructed by the linkage between an inorganic secondary building unit and an organic linker. A number of MOFs are luminescent in nature and can be structurally tuned for desirable geometry, surface functionality, and porosity. Luminescent MOFs have been endorsed for various biosensing applications. Lectins and carbohydrates have been used for the development of simple and convenient biosensing and bioimaging tools. Lectins are mostly present on the surface of microorganisms where they aid in pathogenesis. Due to this, they can be potential targets for a microbial biosensor. The present study, for the first time, explores the usage of a carbohydrate-conjugated FeMOF (Glyco-MOF) bioprobe for the selective determination of Pseudomonas aeruginosa and Escherichia coli. NH2-MIL-53(Fe) MOF was synthesized via a room temperature protocol and separately conjugated with galactose and mannose sugars via glutaraldehyde chemistry. The synthesized bioprobe is validated for structural integrity, luminescent nature, stability, and analyte assay. Electron microscopy studies validated the unhindered MOF's morphology and structural integrity, after bioconjugation. The synthesized bioprobes were able to detect P. aeruginosa and E. coli up to respective detection limits of 202 and 8 CFU/mL, respectively. The bioprobes are selective even in co-presence of possible interferants as well as being environmentally stable.
Collapse
Affiliation(s)
- Deepanshu Bhatt
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalini Singh
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Hussain M, Zou J, Zhang H, Zhang R, Chen Z, Tang Y. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. BIOSENSORS 2022; 12:bios12100869. [PMID: 36291007 PMCID: PMC9599795 DOI: 10.3390/bios12100869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 05/06/2023]
Abstract
Detection of foodborne pathogens at an early stage is very important to control food quality and improve medical response. Rapid detection of foodborne pathogens with high sensitivity and specificity is becoming an urgent requirement in health safety, medical diagnostics, environmental safety, and controlling food quality. Despite the existing bacterial detection methods being reliable and widely used, these methods are time-consuming, expensive, and cumbersome. Therefore, researchers are trying to find new methods by integrating spectroscopy techniques with artificial intelligence and advanced materials. Within this progress report, advances in the detection of foodborne pathogens using spectroscopy techniques are discussed. This paper presents an overview of the progress and application of spectroscopy techniques for the detection of foodborne pathogens, particularly new trends in the past few years, including surface-enhanced Raman spectroscopy, surface plasmon resonance, fluorescence spectroscopy, multiangle laser light scattering, and imaging analysis. In addition, the applications of artificial intelligence, microfluidics, smartphone-based techniques, and advanced materials related to spectroscopy for the detection of bacterial pathogens are discussed. Finally, we conclude and discuss possible research prospects in aspects of spectroscopy techniques for the identification and classification of pathogens.
Collapse
Affiliation(s)
- Mubashir Hussain
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, Liuxian Avenue, Nanshan District, Shenzhen 518055, China
| | - Jun Zou
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- Correspondence: (Z.J.); (T.Y.)
| | - He Zhang
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Ru Zhang
- School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yongjun Tang
- Postdoctoral Innovation Practice, Shenzhen Polytechnic, Liuxian Avenue, Nanshan District, Shenzhen 518055, China
- Correspondence: (Z.J.); (T.Y.)
| |
Collapse
|
17
|
Amines-mediated β-glucose pentaacetate to generate photoluminescent polymer-carbon nanodots for visual monitoring the freshness of shrimp. Talanta 2022; 249:123706. [PMID: 35749905 DOI: 10.1016/j.talanta.2022.123706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
In this paper, a portable fluorescence-based functional hydrogel loaded with β-d-glucose pentaacetate (β-D-GP) is designed for high-sensitive quantification of amine vapor and visual monitoring of freshness of shrimp. We found for the first time that amine vapor can mediate β-D-GP to generate photoluminescent polymer-carbon nanodots (PCNDs) with good optical properties. On this basis, a functional hydrogel sensing platform is simply formed by solidifying β-D-GP in agarose hydrogels. When exposure to the volatile amines released from the spoilage of shrimp, β-D-GP in hydrogel is immediately mediated by amines to generate PCNDs, resulting in obvious fluorescence-based color variation of functional hydrogel. Notably, a smartphone is used to obtain digital photographs and RGB (Red/Green/Blue) information of hydrogels for on-site quantitative analysis. The gray value of G/(R + B) of hydrogel shows good linearity with trimethylamine (TMA) vapor concentration in the range of 0-59.49 × 10-9 mol dm-3. More importantly, the G/(R + B) value of functional hydrogel is successfully used to assess the freshness of shrimp. Consequently, this strategy provides a low-cost, portable fluorescence analysis device with promising applications in achieving high-sensitive, nondestructive, and on-site food safety evaluation of animal-derived aquatic products.
Collapse
|
18
|
Yang T, Luo Z, Bewal T, Li L, Xu Y, Mahdi Jafari S, Lin X. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chem 2022; 394:133534. [PMID: 35752124 DOI: 10.1016/j.foodchem.2022.133534] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Pathogens are one of the supreme threats for the public health around the world in food supply chain. The on-site monitoring is an emerging trend for screening pathogens during the food processing and preserving. Traditional analytical tools have been unable to satisfy the current demands. Smartphones have enormous potentials for achieving on-site detection of foodborne pathogens, with intrinsic advantages such as small size, high accessibility, fast processing speed, and powerful imaging capacity. This review aims to synthesize the current advances in smartphone-assisted biosensors (SABs) for sensing foodborne pathogens, and briefly put forward the problem that consist in the research. We present the role of nanotechnology and recognition modes targeting foodborne pathogens in SABs, and discuss the signal conversion platforms coupling with smartphone. The challenges and perspectives in SABs are also proposed. The smartphone analytics area is moving forward, and it much be subject to careful quality standards and validation.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tarun Bewal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
19
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
20
|
Colorimetric and fluorescent dual-channel sensor array based on Eriochrome Black T/Eu3+ complex for sensing of multiple tetracyclines. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
24
|
Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian JY, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Barani M, Zeeshan M, Kalantar-Neyestanaki D, Farooq MA, Rahdar A, Jha NK, Sargazi S, Gupta PK, Thakur VK. Nanomaterials in the Management of Gram-Negative Bacterial Infections. NANOMATERIALS 2021; 11:nano11102535. [PMID: 34684977 PMCID: PMC8540672 DOI: 10.3390/nano11102535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
The exploration of multiplexed bacterial virulence factors is a major problem in the early stages of Escherichia coli infection therapy. Traditional methods for detecting Escherichia coli (E. coli), such as serological experiments, immunoassays, polymerase chain reaction, and isothermal microcalorimetry have some drawbacks. As a result, detecting E. coli in a timely, cost-effective, and sensitive manner is critical for various areas of human safety and health. Intelligent devices based on nanotechnology are paving the way for fast and early detection of E. coli at the point of care. Due to their specific optical, magnetic, and electrical capabilities, nanostructures can play an important role in bacterial sensors. Another one of the applications involved use of nanomaterials in fighting microbial infections, including E. coli mediated infections. Various types of nanomaterials, either used directly as an antibacterial agent such as metallic nanoparticles (NPs) (silver, gold, zinc, etc.), or as a nanocarrier to deliver and target the antibiotic to the E. coli and its infected area. Among different types, polymeric NPs, lipidic nanocarriers, metallic nanocarriers, nanomicelles, nanoemulsion/ nanosuspension, dendrimers, graphene, etc. proved to be effective vehicles to deliver the drug in a controlled fashion at the targeted site with lower off-site drug leakage and side effects.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.B.); (D.K.-N.)
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.B.); (D.K.-N.)
- Department of Medical Microbiology (Bacteriology and virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Muhammad Asim Farooq
- Faculty of Pharmacy, Department of Pharmaceutics, The University of Lahore, Lahore 54000, Pakistan;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 9861335856, Iran
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| |
Collapse
|
26
|
Li L, Zhang M, Li R, Jiang H, Liu Z. Facile synthesis of highly luminescent rod-like terbium-based metal-organic frameworks for sensitive detection of olaquindox. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3785-3791. [PMID: 34350907 DOI: 10.1039/d1ay00824b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Olaquindox (OLA), a chemically synthesized antibacterial growth promoter, despite being strictly controlled, is illegally used in feed to improve feed conversion efficiency and increase the rate of weight gain for animals. However, it has become clear that OLA has toxic effects on human beings via the transmission of OLA through the food chain. Here, by employing terbium nitrate to provide metal ions and benzene-1,3,5-tricarboxylic acid (H3BTC) as an organic ligand, a simple, rapid, and easy scale-up synthetic method was presented for the fabrication of water-stable and highly luminescent rod-like metal-organic frameworks (Tb-BTC MOFs). Using the Tb-BTC MOFs as a luminescent probe, the luminescence quenching effect was obviously observed upon the addition of OLA, ascribed to the binding of OLA molecules on the surface of Tb-BTC and the existence of an inner-filter effect (IFE) mechanism. The correlation between the luminescence quenching ΔI and the concentration of OLA was found to be linear from 1.0 to 1000.0 μM with a detection limit of 20.6 nM. Furthermore, a Tb-BTC-loaded fiber paper was prepared and it is highly responsive (30 s) and suitable for visual OLA assay. The method described here can be successfully applied to the detection of OLA in animal feed and edible animal tissue samples.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Miaomiao Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Ran Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Huan Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
27
|
Dou X, Sun K, Chen H, Jiang Y, Wu L, Mei J, Ding Z, Xie J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics (Basel) 2021; 10:358. [PMID: 33800674 PMCID: PMC8067089 DOI: 10.3390/antibiotics10040358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/12/2023] Open
Abstract
Food safety has attracted attention worldwide, and how to detect various kinds of hazardous substances in an efficient way has always been a focus. Metal-Organic Frameworks (MOFs) are a class of hybrid porous materials formed by organic ligand and metal ions. Nanoscale MOFs (NMOFs) exhibit great potential in serving as fluorescence sensors for food safety due to their superior properties including high accuracy, great stability, fast response, etc. In this review, we focus on the recent development of NMOFs sensing for food safety. Several typical methods of NMOFs synthesis are presented. NMOFs-based fluorescence sensors for contaminants and adulterants, such as antibiotics, food additives, ions and mycotoxin etc. are summarized, and the sensing mechanisms are also presented. We explore these challenges in detail and provide suggestions about how they may be surmounted. This review could help the exploration of NMOFs sensors in food related work.
Collapse
Affiliation(s)
- Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Haobin Chen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (K.S.); (H.C.); (Y.J.)
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, China;
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (J.M.)
| |
Collapse
|