1
|
Su Y, Zhang Y, Zhang H. MicroRNA Triggered Dimerization of DNA Tetrahedron for Enhanced Biosensing Performance of Solid-State Nanochannels Functionalized with MoS 2 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39568129 DOI: 10.1021/acsami.4c15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Solid-state nanochannels (SSN) have great development potential as a biosensing interface. The integration of two-dimensional nanomaterials with nanochannels endows SSN with diverse properties, including distinguishing DNA nanostructures. In this study, by modifying MoS2 nanosheets, the outer surface of SSN could be endowed with robust adsorption properties for single-stranded DNA. Therefore, DNA tetrahedrons connected with single-stranded DNA could remain on the SSN surface, whereas DNA tetrahedron dimers with full double-stranded structures formed by the presence of target microRNA cannot be retained on the surface of nanochannels. The change in the DNA nanostructure generated by the target recognition process could cause variations of steric hindrance and electrostatic repulsion on the surface of the SSN. The variations were reflected by the free diffusion flux of [Fe(CN)6]3-. Then, the sensitive electrochemical detection method for microRNA was established, and the detection limit of the method for microRNA-31 was as low as 0.5 fM. The study provided a promising approach for the ultrasensitive detection of biomarkers, thereby offering potential means for early diagnosis of the related diseases.
Collapse
Affiliation(s)
- Yuan Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
2
|
Adil O, Adeyeye C, Shamsi MH. Electrografted Laser-Induced Graphene: Direct Detection of Neurodegenerative Disease Biomarker in Cerebrospinal Fluid. ACS Sens 2024; 9:4748-4757. [PMID: 39145609 DOI: 10.1021/acssensors.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
There are more than 50 neurodegenerative disorders, and amyotrophic lateral sclerosis (ALS) is one of the most common disorders that poses diagnostic and treatment challenges. The poly glycine-proline (polyGP) dipeptide repeat is a toxic protein that has been recognized as a pharmacodynamic biomarker of C9orf72-associated (c9+) ALS, a subtype of ALS that originates from genetic mutation. Early detection of polyGP will help healthcare providers start timely gene therapy. Herein, we developed a label-free electrochemical immunoassay for the simple detection of polyGP in unprocessed cerebrospinal fluid (CSF) samples collected from ALS patients in the National ALS Biorepository. For the first time, an electrografted laser-induced graphene (E-LIG) electrode system was employed in a sandwich format to detect polyGP using a label-free electrochemical impedance technique. The results show that the E-LIG-modified surface exhibited high sensitivity and selectivity in buffer and CSF media with limit of detection values of 0.19 and 0.27 ng/mL, respectively. The precision of the calibration model was better in CSF than in the buffer. The E-LIG immunosensor can easily select polyGP targets in the presence of other dipeptide proteins translated from the c9 gene. Further study with CSF samples from ALS patients demonstrated that the label-free E-LIG-based immunosensor not only quantified polyGP in the complex CSF matrix but also distinguished between c9+ and non-c9- ALS patients.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Comfort Adeyeye
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| |
Collapse
|
3
|
Das PK, Adil O, DeGregorio AP, Sumita M, Shamsi MH. Pseudouridine-modified RNA probe for label-free electrochemical detection of nucleic acids on 2D MoS 2 nanosheets. Analyst 2024; 149:1310-1317. [PMID: 38247383 DOI: 10.1039/d3an01832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.
Collapse
Affiliation(s)
- Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Anthony P DeGregorio
- Department of Chemistry, Southern Illinois University Edwardsville, IL, 62026, USA
| | - Minako Sumita
- Department of Chemistry, Southern Illinois University Edwardsville, IL, 62026, USA
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
4
|
H G, S V, Y S N, Devendrappa H. A CTAB-assisted PANI-MoS 2 nanosheet flower morphology for the highly sensitive electrochemical detection of hydrazine. RSC Adv 2023; 13:34891-34903. [PMID: 38035240 PMCID: PMC10687520 DOI: 10.1039/d3ra06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
In this work, cetyl trimethylammonium bromide (CTAB)-assisted polyaniline-molybdenum disulfide (CPANI-MoS2) nanosheets with a flower morphology have been synthesized through in situ polymerization and a hydrothermal method. The composite was analyzed for structural modification through X-ray diffraction (XRD) to examine chemical changes and the presence of functional groups via Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The surface morphology was identified by field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) techniques. The CPANI-MoS2 nanosheet glassy carbon electrode (GCE) offers a novel strategy for the electrochemical detection of carcinogenic hydrazine. The cyclic voltammetry (CV) curve demonstrated a quasi-reversible behaviour with a high-surface area. Furthermore, differential pulse voltammetry (DPV) analysis of hydrazine detection showed a wide linear range from 10 μM to 100 μM, a low limit of detection of 0.40 μM, and a high sensitivity of 7.23 μA μM cm-2. The determination of hydrazine in a water sample and the recovery percentage were found to be 100.31% and 103.73%, respectively. The CPANI-MoS2 nanosheet GCE significantly contributed to the high electroanalytical oxidation activity due to the CTAB surfactant modifying the flower-like nanosheet morphology, which enables the easy adsorption of hydrazine analyte species and exhibits a high current rate with a rapid detection response.
Collapse
Affiliation(s)
- Ganesha H
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - Veeresh S
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - Nagaraju Y S
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - H Devendrappa
- Department of Physics Mangalore University Mangalagangothri-574199 India
| |
Collapse
|
5
|
Adil O, Eddington SB, Gagnon KT, Shamsi MH. Microprobes for Label-Free Detection of Short Tandem Repeats: An Insight into Alleviating Secondary Structure Effects. Anal Chem 2023; 95:13528-13536. [PMID: 37651633 DOI: 10.1021/acs.analchem.3c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Overgrowth of short tandem repeat sequences in our genes can cause various neurodegenerative disorders. Such repeat sequences are ideal targets for the label-free electrochemical detection of such potential expansions. However, their length- and sequence-dependent secondary structures may interfere with the interfacial charge transfer of a detection platform, making them complex targets. In addition, the gene contains sporadic repeats that may result in false-positive signals. Therefore, it is necessary to design a platform capable of mitigating these effects and ultimately enhancing the specificity of tandem repeats. Here, we analyzed three different backbones of nucleic acid microprobes [DNA, peptide nucleic acid, and lock-nucleic acid (LNA)] to detect in vitro transcribed RNA carrying CAG repeats, which are associated with Huntington's disease, based on the charge-transfer resistance of the interface. We found that the LNA microprobe can distinguish lengths down to the attomolar concentration level and alleviate the effect of secondary structures and sporadic repeats in the sequence, thus distinguishing the "tandem repeats" specifically. Additionally, the control experiments conducted with and without Mg2+ demonstrated the LNA microprobe to perform better in the presence of the divalent cation. The results suggest that the LNA-based platform may eventually lead to the development of a reliable and straightforward biosensor for genetic neurodegenerative disorders.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Seth B Eddington
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Keith T Gagnon
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| |
Collapse
|
6
|
Su Y, Jiang Z, Wang Y, Zhang H. MoS 2 nanosheets supported on anodic aluminum oxide membrane: An effective interface for label-free electrochemical detection of microRNA. Anal Chim Acta 2023; 1272:341522. [PMID: 37355338 DOI: 10.1016/j.aca.2023.341522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
The interesting adsorption affinity of two-dimensional nanosheets to single stranded over double stranded nucleic acids have stimulated the exploration of these materials in biosensing. Herein, MoS2 nanosheets decorated anodic aluminum oxide (AAO) membrane was simply prepared by suction filtration. The MoS2/AAO hybrid membrane was initially applied to the electrochemical detection of microRNA using let-7a as the model. When let-7a was incubated with its complementary DNA, double stranded DNA-RNA formed and which displayed weak adsorption capability to the hybrid membrane. And thus the steric effect combining the electrostatic repulsion of the backbone phosphate of nucleic acids for [Fe(CN)6]3- transport across the hybrid membrane varied with the concentration of let-7a. In this way, a label-free electrochemical detection method for microRNA was established by monitoring the change of the redox current of [Fe(CN)6]3-. To further improve the detection sensitivity of the method, we proposed two separate strategies focusing on the amplification of the target-induced steric hindrance with DNA nanostructure and the magnification of the electrode sensitivity for [Fe(CN)6]3- by electrode modification. By using the two strategies, the hybrid membrane based-detection method exhibited broad linear range, low detection limit and good selectivity as well as reproducibility. Therefore, this study provided a proof-of-concept for the application of two-dimensional material to nucleic acids detection.
Collapse
Affiliation(s)
- Yuan Su
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Zilian Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yahui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
7
|
Ortiz Peña N, Cherukula K, Even B, Ji DK, Razafindrakoto S, Peng S, Silva AKA, Ménard-Moyon C, Hillaireau H, Bianco A, Fattal E, Alloyeau D, Gazeau F. Resolution of MoS 2 Nanosheets-Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular-Vesicle Shuttles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209615. [PMID: 36649533 DOI: 10.1002/adma.202209615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum-based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4 - , and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.
Collapse
Affiliation(s)
- Nathaly Ortiz Peña
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Kondareddy Cherukula
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Benjamin Even
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Sarah Razafindrakoto
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Amanda K A Silva
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Damien Alloyeau
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Florence Gazeau
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
8
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Khairu Anuar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalyst Research Centre (NANOCAT), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
10
|
Yang J, Hu X, Zhang W. Electrochemical self-signal switch for determination of KRAS gene employing riboflavin 5’-adenosine diphosphate functionalized MoS2 nanosheets. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Asefifeyzabadi N, Durocher G, Tshilenge KT, Alam T, Ellerby LM, Shamsi MH. PNA microprobe for label-free detection of expanded trinucleotide repeats. RSC Adv 2022; 12:7757-7761. [PMID: 35424746 PMCID: PMC8982460 DOI: 10.1039/d2ra00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022] Open
Abstract
We present a PNA microprobe sensing platform to detect trinucleotide repeat mutation by electrochemical impedance spectroscopy. The microprobe platform discriminated Huntington's disease-associated CAG repeats in cell-derived total RNA with S/N 1 : 3. This sensitive, label-free, and PCR-free detection strategy may be employed in the future to develop biosensing platforms for the detection of a plethora of repeat expansion disorders.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | | | - Tanimul Alam
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| |
Collapse
|
12
|
Abdolmaleki A, Gharibi H, Molavian MR, Norouzi M, Asefifeyzabadi N. Physicochemical modification of hydroxylated polymers to develop thermosensitive double network hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amir Abdolmaleki
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | - Hamidreza Gharibi
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | | | | | - Narges Asefifeyzabadi
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale Illinois USA
| |
Collapse
|
13
|
Asefifeyzabadi N, Das PK, Onorimuo AH, Durocher G, Shamsi MH. DNA interfaces with dimensional materials for biomedical applications. RSC Adv 2021; 11:28332-28341. [PMID: 35480758 PMCID: PMC9038036 DOI: 10.1039/d1ra04917h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
DNA interfaces with nano, micro, and macro materials have gained widespread attention for various applications. Such interfaces exhibit distinct functions and properties not only due to the unique properties of interfacing materials but also sequence- and conformation-dependent characteristics of the DNA. Therefore, DNA interfaces with diverse dimensional materials have advanced our understanding of the interaction mechanisms and the properties of such interfaces. The unique interfacial properties of such novel materials have applications in nanotechnology, biophysics, cell biology, biosensing, and bioelectronics. The field is growing rapidly with the frequent emergence of new interfaces carrying remarkable interfacial character. In this review article, we have classified the DNA interfaces into 0D, 1D, 2D, and 3D categories based on the types of dimensional materials. We review the key efforts made in the last five years and focus on types of interfaces, interfacing mechanisms, and their state-of-the-art applications. This review will draw a general interest because of the diversity in the DNA materials science but also the unique applications that will play a cutting-edge role in biomedical and biosensing research.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Avokerie Hillary Onorimuo
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| |
Collapse
|
14
|
Sequence-Independent DNA Adsorption on Few-Layered Oxygen-Functionalized Graphene Electrodes: An Electrochemical Study for Biosensing Application. BIOSENSORS 2021; 11:bios11080273. [PMID: 34436075 PMCID: PMC8394360 DOI: 10.3390/bios11080273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
DNA is strongly adsorbed on oxidized graphene surfaces in the presence of divalent cations. Here, we studied the effect of DNA adsorption on electrochemical charge transfer at few-layered, oxygen-functionalized graphene (GOx) electrodes. DNA adsorption on the inkjet-printed GOx electrodes caused amplified current response from ferro/ferricyanide redox probe at concentration range 1 aM–10 nM in differential pulse voltammetry. We studied a number of variables that may affect the current response of the interface: sequence type, conformation, concentration, length, and ionic strength. Later, we showed a proof-of-concept DNA biosensing application, which is free from chemical immobilization of the probe and sensitive at attomolar concentration regime. We propose that GOx electrodes promise a low-cost solution to fabricate a highly sensitive platform for label-free and chemisorption-free DNA biosensing.
Collapse
|
15
|
Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Anal Bioanal Chem 2021; 413:2429-2445. [PMID: 33712916 DOI: 10.1007/s00216-021-03213-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have developed rapidly in recent years, because of their advantages, such as small sample volume, rapid detection rates, low cost, and portability. Due to these characteristics, they can be used for in vitro diagnostics in the laboratory, or in the field, for a variety of applications, including food evaluation, disease screening, environmental monitoring, and drug testing. This review will present various detection methods employed by μPADs and their respective applications for the detection of target analytes. These include colorimetry, electrochemistry, chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence-based methodologies. At the same time, the choice of labeling material and the design of microfluidic channels are also important for detection results. The construction of novel nanocomponents and different smart structures of paper-based devices have improved the performance of μPADs and we will also highlight some of these in this manuscript. Additionally, some key challenges and future prospects for the use of μPADs are briefly discussed.
Collapse
|