1
|
Du T, Zhou Q, Lu W, Cui H, Liu J, Lin X, Yu L, Zhang X, Yang F. Electric Field-Induced Synergetic Enhancement of Local Hydroxyl Concentration and Photogenerated Carrier Density for Removal of CO ads in Electrocatalytic Formic Acid Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407510. [PMID: 39665380 DOI: 10.1002/smll.202407510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Direct formic acid fuel cell (DFAFC) is an efficient power generation device, due to its high energy density, low fuel crossover and low emission. However, the anodic reaction of DFAFC, formic acid oxidation (FAOR), inevitably proceeds through an indirect pathway, adsorbing carbon monoxide intermediate (COads), resulting in a rapid decline of activity for FAOR. Therefore, effectively removing COads is the key to the development of DFAFC. In this work, Pd/CeO2 catalyst is synthesized by in situ growth of Pd nanoparticles on the hollow CeO2. Due to the difference of work function between Pd and CeO2, a built-in electric field from Pd side to CeO2 side is formed, which induces a synergistic enhancement of the photogenerated carrier density and the local high hydroxyl concentration at the Pd/CeO2 interface, thus promoting the oxidative removal of COads and significantly improving the stability of FAOR. Therefore, in photo-assisted electrocatalytic FAOR, Pd/CeO2 not only possessed high mass activity (4161.72 mA mg-1 Pd), and its mass activity decreases by only 20.1% after 40000 s chronoamperometry test, which is superior to most Pd-based catalysts. This work provides a new strategy for efficient removal of COads in FAOR through constructing built-in electric fields, which promotes the DFAFC application.
Collapse
Affiliation(s)
- Tingting Du
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Qiangqiang Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Wenhao Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Hao Cui
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Jiaqing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Xing Lin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Xin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| | - Fengchun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
2
|
Li Q, Si W, Peng Y, Wang Y, Li J. Tuning Pd species via electronic metal-support interaction for methane combustion. J Colloid Interface Sci 2024; 667:12-21. [PMID: 38615619 DOI: 10.1016/j.jcis.2024.03.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Utilizing catalytic combustion to convert methane (CH4) into CO2 and H2O stands as one of the most effective approaches for mitigating unburnt CH4 emissions from natural gas engines. Supported Pd catalysts have been extensively researched for their role in low-temperature CH4 combustion, with their catalytic activity greatly influenced by metal-support interactions. Surface interaction Pd phases, as a special type of Pd species originating from metal-support interactions on supported Pd catalysts, show controversial catalytic performance in CH4 combustion. Moreover, the impact of electronic metal-support interactions (EMSI, which refers to metal-support interactions associated with electron transfer) remains unclear. Hence, we opted for Ce-Zr solid solutions with different Ce:Zr molar ratios as supports and synthesized a range of supported Pd catalysts with varying EMSI intensities. Characterization revealed that as the oxygen vacancy concentration on the support increased, electron transfer weakened, leading to a higher Pd-O-Ce content, resulting in a lower CH4 activation barrier and better catalytic performance. This study offers a promising approach for regulating EMSI and active Pd species on supported catalysts in practical applications.
Collapse
Affiliation(s)
- Qi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Seong G, Yoko A, Tomai T, Naka T, Wang H, Frenkel AI, Adschiri T. Effect of Exposed Facets and Oxidation State of CeO 2 Nanoparticles on CO 2 Adsorption and Desorption. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7532-7540. [PMID: 39697414 PMCID: PMC11651629 DOI: 10.1021/acssuschemeng.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 12/20/2024]
Abstract
CeO2 nanoparticles exhibit potential as solid adsorbents for carbon dioxide (CO2) capture and storage (CCS), offering precise control over various facets and enhancing their efficiency. This study investigated the adsorption and desorption behaviors of two types of CeO2 nanoparticles: cubic CeO2 with primarily {001} facets and polyhedral CeO2 with mainly {111} facets. The results showed that despite polyhedral CeO2's lower quantity, it demonstrated successful adsorption-desorption cycles in both oxidized and reduced states. However, reduced CeO2-x exhibited a higher adsorption capacity but displayed irreversible adsorption-desorption cycles. Reversible adsorption occurred through weak bond formation with CO2, while cubic CeO2 with a high oxygen vacancy concentration exhibited irreversible adsorption due to strong bond formation. These insights contribute significantly to understanding CeO2 nanoparticle characteristics and their impact on the CO2 adsorption and desorption processes, aiding in the development of advanced CCS techniques.
Collapse
Affiliation(s)
- Gimyeong Seong
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Department
of Environmental and Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - Akira Yoko
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International
Center for Synchrotron Radiation Innovation Smart, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takaaki Tomai
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Naka
- National
Institute of Materials Sciences (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Haodong Wang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tadafumi Adschiri
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
4
|
Sofian M, Nasim F, Ali H, Nadeem MA. Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction. RSC Adv 2023; 13:14306-14316. [PMID: 37197672 PMCID: PMC10184137 DOI: 10.1039/d3ra01929b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
A highly efficient and stable electrocatalyst comprised of yttrium oxide (Y2O3) and palladium nanoparticles has been synthesized via a sodium borohydride reduction approach. The molar ratio of Pd and Y was varied to fabricate various electrocatalysts and the oxidation reaction of formic acid was checked. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) are used to characterize the synthesized catalysts. Among the synthesized catalysts (PdyYx/rGO), the optimized catalyst i.e., Pd6Y4/rGO exhibits the highest current density (106 mA cm-2) and lowest onset potential compared to Pd/rGO (28.1 mA cm-2) and benchmark Pd/C (21.7 mA cm-2). The addition of Y2O3 to the rGO surface results in electrochemically active sites due to the improved geometric structure and bifunctional components. The electrochemically active surface area 119.4 m2 g-1 is calculated for Pd6Y4/rGO, which is ∼1.108, ∼1.24, ∼1.47 and 1.55 times larger than Pd4Y6/rGO, Pd2Y8/rGO, Pd/C and Pd/rGO, respectively. The redesigned Pd structures on Y2O3-promoted rGO give exceptional stability and enhanced resistance to CO poisoning. The outstanding electrocatalytic performance of the Pd6Y4/rGO electrocatalyst is ascribed to uniform dispersion of small size palladium nanoparticles which is possibly due to the presence of yttrium oxide.
Collapse
Affiliation(s)
- Muhammad Sofian
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Fatima Nasim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hassan Ali
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan
| |
Collapse
|
5
|
Intermediate temperature exposure regenerates performance and active site dispersion in sintered Pd–CeO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Song J, Bai S, Sun Q. Strong metal-support interaction of Pd/CeO2 enhances hydrogen production from formic acid decomposition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Guo Z, Zhao X, Chen G, Zhao W, Liu T, Hu R, Jiang X. Controllable synthesis of magic cube-like Ce-MOF-derived Pt/CeO 2 catalysts for formaldehyde oxidation. NANOSCALE 2022; 14:12713-12721. [PMID: 35996893 DOI: 10.1039/d2nr03050k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controllable synthesis of MOFs with desired structures is of great significance to deepen the understanding of the crystal nucleation-growth mechanism and deliver unique structural features to their derived metal oxides with target catalytic applications. In this study, NH2-Ce-BDC with morphology similar to a second-order magic cube (mc) is facile synthesized via H+ mediation in nucleation and growth stages. The pertinent variables that can greatly influence the formation of magic cube-like structures (MCS) were investigated, in which the concentric diffusion field was found to be one of the key factors. Upon calcination, the derived CeO2 inherits unique gullies and grooves located on the pristine MOFs surface, which is quite useful for atomic layer deposition (ALD) of platinum (Pt) nanoparticles because of strong interaction with MOF-derived CeO2 (mc-CeO2). XPS, H2-TPR, Raman, and in situ DRIFTS characterization results show that there is a stronger interaction between Pt and mc-CeO2 in mc-Pt/CeO2 compared with c-Pt/CeO2 that is derived from the well-developed cubic Ce-MOFs. Furthermore, Pt2+ ions, hydroxyl oxygen, and oxygen defects in mc-Pt/CeO2 account highly for exemplary catalytic activity toward HCHO oxidation.
Collapse
Affiliation(s)
- Zeyi Guo
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Xiuxian Zhao
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Wei Zhao
- Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Shandong Institute and Laboratory of Geological Sciences, Jinan 250013, P.R. China
| | - Tongyao Liu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, P.R. China.
- School of Materials Science and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, P.R. China
| |
Collapse
|
8
|
Gao S, Hu S, Luo G, Sun S, Zhang X. 2,2′-bipyridine palladium (II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Al-Akraa IM, Asal YM, Mohammad AM. Surface engineering of Pt surfaces with Au and cobalt oxide nanostructures for enhanced formic acid electro-oxidation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
11
|
Xu H, Huang B, Zhao Y, He G, Chen H. Engineering Heterostructured Pd-Bi 2Te 3 Doughnut/Pd Hollow Nanospheres for Ethylene Glycol Electrooxidation. Inorg Chem 2022; 61:4533-4540. [PMID: 35236071 DOI: 10.1021/acs.inorgchem.2c00296] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrooxidation of ethylene glycol (EG) is of vital significance for the conversion from biomass energy into electrical energy via direct fuel cells. However, the EG oxidation reaction (EGOR) suffers from poor efficiency due to the limitation of high-performance electrocatalysts for cleaving the C-C bonds. Herein, this limitation is successfully addressed by fabricating the doughnut-shaped Pd-Bi2Te3 heterostructured catalyst. Notably, the heterojunction Pd-Bi2Te3 nanocatalyst has been demonstrated to be highly active toward the EGOR with superb activity and durability, in which a mass activity as high as 2420.8 mA mg-1 is achieved in alkaline media, being 1.7 times higher than that of the commercial Pd/C catalyst. Upon combination of experimental results with mechanism studies, it is indicated that the remarkable EGOR performance is attributed to the enlarged active areas that stemmed from the doughnut-like structure, as well as the strong synergistic effect from Pd-Bi2Te3 and Pd. More importantly, the highly electroactive Pd-Bi2Te3 can accelerate charge transfer and boost the oxidation of CO-like intermediates, which are conducive to the enhancement in electrochemical stability.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Bingji Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yitao Zhao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| |
Collapse
|
12
|
Xue J, Wu X, Feng L. Pt/Mn 3O 4 cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chem Commun (Camb) 2022; 58:2371-2374. [PMID: 35080569 DOI: 10.1039/d2cc00105e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pt particles anchored onto Mn3O4 cubes were found to have high anti-CO poisoning abilities for C1- and C2-alcohol fuel oxidations in acid electrolyte, due to an electronic effect that enriched the surfaces of the Pt particles with electrons and due to the oxophilicity of Mn3O4 in the system.
Collapse
Affiliation(s)
- Jia Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiang Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
13
|
Electrocatalytic oxidation of formic acid on Pd/CNTs nanocatalysts synthesized in special “non-aqueous” system. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zhang Q, Wang K, Zhang M, Chen T, Li L, Shi S, Jiang R. Electronic structure optimization boosts Pd nanocrystals for ethanol electrooxidation realized by Te doping. CrystEngComm 2022. [DOI: 10.1039/d2ce00710j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Te doping greatly modifies the electronic structure of Pd and promotes the electrocatalytic performance towards EOR.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Kangqiang Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Mingqing Zhang
- Shandong Hi-speed Road & Bridge Technology Co., Ltd, Jinan 250014, China
| | - Ting Chen
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Luyan Li
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Rongyan Jiang
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
15
|
Murthy PR, Munsif S, Zhang JC, Li WZ. Influence of CeO 2 and ZrO 2 on the Thermal Stability and Catalytic Activity of SBA-15-Supported Pd Catalysts for CO Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Palle Ramana Murthy
- State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sehrish Munsif
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing-Cai Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-Zhen Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Su C, Li Z, Mao M, Ye W, Zhong J, Ren Q, Cheng H, Huang H, Fu M, Wu J, Hu Y, Ye D, Xu H. Unraveling specific role of carbon matrix over Pd/quasi-Ce-MOF facilitating toluene enhanced degradation. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Facile synthesis of heterophase sponge-like Pd toward enhanced formic acid oxidation. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Qiao W, Yang X, Li M, Feng L. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. NANOSCALE 2021; 13:6884-6889. [PMID: 33885489 DOI: 10.1039/d1nr01005k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methanol electrooxidation is significant in realizing effective C1 liquid fuel applications. Herein, hollow Pd/Te nanorods were fabricated and evaluated for methanol oxidation, and they were found to exhibit high catalytic efficiency for methanol oxidation in alkaline electrolyte compared to Pd or Pd/C catalysts. The hybrid structure of hexagonal crystal Te and face-centered cubic Pd was formed by microwave assisted Pd nanoparticle deposition over the surface of Te nanorods. Strong electronic effects and facile oxophilic properties were indicated in the Pd/Te system by spectroscopic analysis, which mainly accounts for the high catalytic performance for methanol oxidation. Specifically, they showed a peak current density of 90.1 mA cm-2 for methanol oxidation, around 3.5 times higher than that of commercial Pd/C (26.3 mA cm-2). High catalytic stability was also observed for Pd/Te, with a current retention of 64.3% after 3600 s of chronoamperometric testing, much higher than for Pd catalysts (20.1%). High anti-CO poisoning ability of the Pd/Te catalyst was demonstrated in the CO-stripping voltammetry results, and faster catalytic kinetics were also observed for this catalyst system. The electron-rich state of Pd and high active site exposure are responsible for the high performance of the Pd/Te catalyst in methanol oxidation.
Collapse
Affiliation(s)
- Wei Qiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | | | | | | |
Collapse
|