1
|
Delhaye BP, Schiltz F, Crevecoeur F, Thonnard JL, Lefèvre P. Fast grip force adaptation to friction relies on localized fingerpad strains. SCIENCE ADVANCES 2024; 10:eadh9344. [PMID: 38232162 DOI: 10.1126/sciadv.adh9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions. We observed that, following an unbeknown change in plate across trials, participants adapted their grip force to friction. After switching from high to low friction, we found a significant increase in strain inside the contact arising ~100 ms before the modulation of grip force, suggesting that differences in strain patterns before lift-off are used by the nervous system to quickly adjust the force to the frictional properties of manipulated objects.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félicien Schiltz
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Valenza A, Rykaczewski K, Martinez DM, Bianco A, Caggiari S, Worsley P, Filingeri D. Thermal modulation of skin friction at the finger pad. J Mech Behav Biomed Mater 2023; 146:106072. [PMID: 37597311 DOI: 10.1016/j.jmbbm.2023.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Preliminary human studies show that reduced skin temperature minimises the risk of mechanically induced skin damage. However, the mechanisms by which cooling enhances skin tolerance to pressure and shear remain poorly understood. We hypothesized that skin cooling below thermo-neutral conditions will decrease kinetic friction at the skin-material interface. To test our hypothesis, we measured the friction coefficient of a thermally pre-conditioned index finger pad sliding at a normal load (5N) across a plate maintained at three different temperatures (38, 24, and 16 °C) in 8 healthy young adults (29±5y). To quantify the temperature distribution of the skin tissue, we used 3D surface scanning and Optical Coherence Tomography to develop an anatomically representative thermal model of the finger. Our group-level data indicated that the sliding finger with thermally affected tissues (up to 8 mm depth) experienced significantly lower frictional forces (p<0.01) at plate temperatures of 16 °C (i.e. 32% decrease) and 24 °C (i.e. 13% decrease) than at 38 °C, respectively. This phenomenon occurred consistently across participants (i.e. N = 6/8, 75%) and without large changes in skin hydration during sliding. Our complementary experimental and theoretical results provide new insights into thermal modulation of skin friction that can be employed for developing thermal technologies to maintain skin integrity under mechanical loading and shearing.
Collapse
Affiliation(s)
- Alessandro Valenza
- ThermosenseLab, Skin Sensing Research Group, School of Health Science, University of Southampton, UK; Sport and Exercise Sciences Research Unit, SPPEFF Department, University of Palermo, Italy
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, 85287, USA
| | - Daniel M Martinez
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287, USA
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, SPPEFF Department, University of Palermo, Italy
| | - Silvia Caggiari
- PressureLab, Skin Sensing Research Group, School of Health Science, University of Southampton, UK
| | - Peter Worsley
- PressureLab, Skin Sensing Research Group, School of Health Science, University of Southampton, UK
| | - Davide Filingeri
- ThermosenseLab, Skin Sensing Research Group, School of Health Science, University of Southampton, UK.
| |
Collapse
|
3
|
Wos S, Koszela W, Dzierwa A, Pawlus P. Effects of Operating Conditions and Pit Area Ratio on the Coefficient of Friction of Textured Assemblies in Lubricated Reciprocating Sliding. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7199. [PMID: 36295267 PMCID: PMC9609365 DOI: 10.3390/ma15207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The experiment was carried out in a reciprocating lubricated conformal sliding contact between steel discs of the same hardness. The effects of disc surface texturing on the friction coefficient at various operating conditions (temperature, normal load, and frequency of oscillations) were studied. Under various conditions, surface texturing caused friction reductions of sliding pairs. The largest reduction was 4.6 times at a lower temperature and 2.5 times at a higher temperature. The effect of the pit area ratio on the friction reduction was visible at a higher temperature. The highest dimple density of 25% corresponded to a lower coefficient of friction than the smallest density of 9%. The sliding pair with a dimple density of 17% led to large variation of the friction force. At lower temperatures, the coefficients of friction were lower compared to tests at higher temperatures.
Collapse
|
4
|
Rykaczewski K. Thermophysiological aspects of wearable robotics: Challenges and opportunities. Temperature (Austin) 2022; 10:313-325. [PMID: 37554385 PMCID: PMC10405755 DOI: 10.1080/23328940.2022.2113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022] Open
Abstract
Technological advancements in the last two decades have enabled development of a variety of mechanically supporting wearable robots (i.e. exoskeletons) that are transitioning to practice in medical and industrial settings. The feedback from industry and recent controlled studies is highlighting thermal discomfort as a major reason for the disuse of the devices and a substantial barrier to their long-term adoption. Furthermore, a brief overview of the devices and their intended applications reveals that many of the potential users are likely to face thermal comfort issues because of either high exertion or medically related high heat sensitivity. The aim of this review is to discuss these emerging thermal challenges and opportunities surrounding wearable robots. This review discusses mechanisms, potential solutions, and a platform for systematically measuring heat transfer inhibition caused by wearing of an exoskeleton. Lastly, the potential for substantial metabolic rate reduction provided by exoskeletons to reduce worker thermal strain in warm-to-hot conditions is also considered.
Collapse
Affiliation(s)
- Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, US
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Rykaczewski K, Dhanote T. Analysis of thermocouple-based finger contact temperature measurements. J Therm Biol 2022; 108:103293. [DOI: 10.1016/j.jtherbio.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
6
|
Choi C, Ma Y, Li X, Chatterjee S, Sequeira S, Friesen RF, Felts JR, Hipwell MC. Surface haptic rendering of virtual shapes through change in surface temperature. Sci Robot 2022; 7:eabl4543. [PMID: 35196072 DOI: 10.1126/scirobotics.abl4543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compared to relatively mature audio and video human-machine interfaces, providing accurate and immersive touch sensation remains a challenge owing to the substantial mechanical and neurophysical complexity of touch. Touch sensations during relative lateral motion between a skin-screen interface are largely dictated by interfacial friction, so controlling interfacial friction has the potential for realistic mimicry of surface texture, shape, and material composition. In this work, we show a large modulation of finger friction by locally changing surface temperature. Experiments showed that finger friction can be increased by ~50% with a surface temperature increase from 23° to 42°C, which was attributed to the temperature dependence of the viscoelasticity and the moisture level of human skin. Rendering virtual features, including zoning and bump(s), without thermal perception was further demonstrated with surface temperature modulation. This method of modulating finger friction has potential applications in gaming, virtual and augmented reality, and touchscreen human-machine interaction.
Collapse
Affiliation(s)
- Changhyun Choi
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuan Ma
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.,Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China.,Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Xinyi Li
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sitangshu Chatterjee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sneha Sequeira
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca F Friesen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan R Felts
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - M Cynthia Hipwell
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Li X, Ma Y, Choi C, Ma X, Chatterjee S, Lan S, Hipwell MC. Nanotexture Shape and Surface Energy Impact on Electroadhesive Human-Machine Interface Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008337. [PMID: 34173278 DOI: 10.1002/adma.202008337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
With the ubiquity of touch screens and the commercialization of electroadhesion-based surface haptic devices, modeling tools that capture the multiphysical phenomena within the finger-device interface and their interaction are critical to design devices that achieve higher performance and reliability at lower cost. While electroadhesion has successfully demonstrated the capability to change tactile perception through friction modulation, the mechanism of electroadhesion in the finger-device interface is still unclear, partly due to the complex interfacial physics including contact deformation, capillary formation, electric field, and their complicated coupling effects that have not been addressed comprehensively. A multiphysics model is presented here to predict the friction force for finger-surface tactile interactions at the nanoscale. The nanoscopic multiphysical phenomena are coupled to study the impacts of nanotexture and surface energy in the touch interface. With macroscopic friction force measurements as verification, the model is further used to propose textures that have maximum electroadhesion effect and minimum sensitivity to relative humidity and user perspiration rate. This model can guide the performance improvement of future electroadhesion-based surface haptic devices and other touch-based human-machine interfaces.
Collapse
Affiliation(s)
- Xinyi Li
- Texas A&M University, College Station, TX, 77843, USA
| | - Yuan Ma
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Xuezhi Ma
- Texas A&M University, College Station, TX, 77843, USA
| | | | - Shoufeng Lan
- Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|