1
|
Li W, Lai Q, Gao XW, Yang D, Wen L, Liu Z, Luo WB. Stabilizing the Layer-Structured Oxide Cathode by Modulating the Oxygen Redox Activity for Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406453. [PMID: 39358949 DOI: 10.1002/smll.202406453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The layer-structured oxide cathode for sodium-ion batteries has attracted a widespread attention due to the unique redox properties and the anionic redox activity providing additional capacity. Nevertheless, such excessive oxygen redox reactions will lead to irreversible oxygen release, resulting in a rapid deterioration of the cycling stability. Herein, sulfur ion is successfully introduced to the O3-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 material through high-temperature quenching, thereby developing a novel Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 composite with extended cycling life. The S2- is analyzed for the ability to enhance the reversibility of oxidation-reduction reactions under high voltage and suppress the loss of lattice oxygen during cycling. The stable S─O covalent bonds are found to inhibit the oxygen generation and release within the structure. Benefiting from these improvements, the Na₂S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 exhibited a high reversible capacity of 173.1 mA h g-1 over a wide voltage range of 1.5-4.3 V under test conditions at 0.1 C and 81.5% capacity retention after 120 cycles at 1 C. The Na₂S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 demonstrates the excellent rate capability with the reversible capacities of 173.1,137.0,114.7,96.7, and 80.1 mA h g-1 at 0.1, 0.2, 0.5, 1, and 2 C.
Collapse
Affiliation(s)
- Wei Li
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
| | - Qingsong Lai
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
| | - Xuan-Wen Gao
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongrun Yang
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
| | - Lei Wen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zhaomeng Liu
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Bin Luo
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China
| |
Collapse
|
2
|
Li Y, Zhang T, Song Z, Huang Y, Li F, Chen A, Li F. Challenges and Modification Strategies on High-Voltage Layered Oxide Cathode for Sodium-Ion Batteries. CHEMSUSCHEM 2024:e202401666. [PMID: 39314130 DOI: 10.1002/cssc.202401666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Sodium-ion batteries (SIBs) have attracted great attention due to their advantages on resource abundance, cost and safety. Layered oxide cathodes (LOCs) of SIBs possess high theoretical capacity, facile synthesis and low cost, and are promising candidates for large scale energy storage application. Increasing operating voltage is an effective strategy to achieve higher specific capacity and also high energy density of SIBs. However, at high operating voltages, LOCs will undergo a series of phase transitions in bulk phase, leading to huge change of volume and layer spacings accompanied by severe lattice stress and cracking formation. Degeneration of surface also occurs between LOCs and electrolytes, resulting in sustained growth of cathode electrolyte interphase (CEI) and release of O2 and CO2. These induce structural destruction and electrochemical performance degradation in high voltage regions. Recently, many strategies have been proposed to improve electrochemical performance of LOCs under high voltages, including bulk element doping, structural design, surface coating and gradient doping. This review describes pivotal challenges and occurrence mechanisms at high voltages, and summarizes strategies to improve stability of bulk and surface. Viewpoints will be provided to promote development of high energy density SIBs.
Collapse
Affiliation(s)
- Yuesen Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tong Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zihao Song
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaohui Huang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fei Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Fujun Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustanable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Liu X, Yuan C, Zheng X, Cheng G, Qian H, Zheng B, Lu X, Yang Y, Zhu Y, Xiang Y. Stabilizing Interlayer Repulsion in Layered Sodium-Ion Oxide Cathodes via Hierarchical Layer Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407519. [PMID: 39090700 DOI: 10.1002/adma.202407519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Layered sodium-ion oxides hold considerable promise in achieving high-performance sodium-ion batteries. However, the notorious phase transformation during charging, attributed to increased O2-─O2- repulsion, results in substantial performance decay. Here, a hierarchical layer modification strategy is proposed to stabilize interlayer repulsion. During desodiation, migrated Li+ from the transition metal layer and anchored Ca2+ in sodium sites maintain the cationic content within the sodium layer. Meanwhile, partial oxygen substitution by fluorine and the involvement of oxygen in redox reactions increase the average valence of the oxygen layer. This sustained cation presence and elevated anion valence collectively mitigate increasing O2-─O2- repulsion during sodium extraction, enabling the Na0.61Ca0.05[Li0.1Ni0.23Mn0.67]O1.95F0.05 (NCLNMOF) cathode to retain a pure P2-type structure across a wide voltage range. Unexpected insights reveal the interplay between different doping elements: the robust Li─F bonds and Ca2+ steric effects suppressing Li+ loss. The NCLNMOF electrode exhibits 82.5% capacity retention after 1000 cycles and a high-rate capability of 94 mAh g-1 at 1600 mA g-1, demonstrating the efficacy of hierarchical layer modification for high-performance layered oxide cathodes.
Collapse
Affiliation(s)
- Xiangsi Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Chen Yuan
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xingyu Zheng
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Gangya Cheng
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hui Qian
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Bizhu Zheng
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xingyu Lu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yao Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yizhou Zhu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuxuan Xiang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
4
|
Chen Z, Deng Y, Kong J, Fu W, Liu C, Jin T, Jiao L. Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402008. [PMID: 38511531 DOI: 10.1002/adma.202402008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Sodium-ion batteries (SIBs) have garnered significant attention as ideal candidates for large-scale energy storage due to their notable advantages in terms of resource availability and cost-effectiveness. However, there remains a substantial energy density gap between SIBs and commercially available lithium-ion batteries (LIBs), posing challenges to meeting the requirements of practical applications. The fabrication of high-energy cathodes has emerged as an efficient approach to enhancing the energy density of SIBs, which commonly requires cathodes operating in high-voltage regions. Layered oxide cathodes (LOCs), with low cost, facile synthesis, and high theoretical specific capacity, have emerged as one of the most promising candidates for commercial applications. However, LOCs encounter significant challenges when operated in high-voltage regions such as irreversible phase transitions, migration and dissolution of metal cations, loss of reactive oxygen, and the occurrence of serious interfacial parasitic reactions. These issues ultimately result in severe degradation in battery performance. This review aims to shed light on the key challenges and failure mechanisms encountered by LOCs when operated in high-voltage regions. Additionally, the corresponding strategies for improving the high-voltage stability of LOCs are comprehensively summarized. By providing fundamental insights and valuable perspectives, this review aims to contribute to the advancement of high-energy SIBs.
Collapse
Affiliation(s)
- Zhigao Chen
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Yuyu Deng
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ji Kong
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Weibin Fu
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chenyang Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ting Jin
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Wang J, Zhu YF, Su Y, Guo JX, Chen S, Liu HK, Dou SX, Chou SL, Xiao Y. Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chem Soc Rev 2024; 53:4230-4301. [PMID: 38477330 DOI: 10.1039/d3cs00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.
Collapse
Affiliation(s)
- Jingqiang Wang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yu Su
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Jun-Xu Guo
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Shuangqiang Chen
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Hua-Kun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| |
Collapse
|
6
|
Liu H, Li C, Tong W, Hu B. Highly Reversible Local Structural Transformation Enabled by Native Vacancies in O2-Type Li-Rich Layered Oxides with Anion Redox Activity. J Phys Chem Lett 2023; 14:2323-2330. [PMID: 36847473 DOI: 10.1021/acs.jpclett.2c03880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel O2-phase Li1.033Ni0.2[□0.1Mn0.5]O2 cathode with native vacancies (denoted as "□") was delicately designed. By a combination of noninvasive 7Li pj-MATPASS NMR and electron paramagnetic resonance measurements, it is unequivocally shown that the reservation of native vacancies enables the fully reversible local structural transformation without the formation of Li in the Li layer (Litet) in Li1.033Ni0.2[□0.1Mn0.5]O2 during the initial and subsequent cycling. In addition, the pernicious in-plane Mn migration that would result in the generation of trapped molecular O2 is effectively mitigated in Li1.033Ni0.2[□0.1Mn0.5]O2. As a result, the cycle stability of Li1.033Ni0.2[□0.1Mn0.5]O2 is significantly enhanced compared to that of the vacancy-free Li1.033Ni0.2Mn0.6O2, showing an extraordinary capacity retention of 102.31% after 50 cycles at a rate of 0.1C (1C = 100 mA g-1). This study defines an efficacious strategy for upgrading the structural stability of O2-type Li-rich layered oxide cathodes with reversible high-voltage anion redox activity.
Collapse
Affiliation(s)
- Hui Liu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Wei Tong
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
7
|
Liao Y, Feng H, Yang Q, Shen M, Jiang Y, Li C, Zhao C, Geng F, Hu B. Oxygen Redox Activation at Initial Cycle to Improve Cycling Stability for the Na 0.83Li 0.12Ni 0.22Mn 0.66O 2 System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10709-10717. [PMID: 36792937 DOI: 10.1021/acsami.2c21573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxygen reactions are commonly used to increase the specific capacities of Na-ion batteries, especially for the NaxLiyTMO2 systems. Previous research focused on improving the stabilities of oxygen reactions to enhance cycling stability. However, the effects of oxygen reactions on the distribution of Li ions in the transition metal (TM) and alkali metal (AM) layers for the Na-ion battery are relatively unexplored and rarely employed. In this study, we employ a layered P2-Na0.83Li0.12Ni0.22Mn0.66O2 cathode to control the effects of the oxygen reactions on the distributions of Li ions in two layers. With oxygen-redox-activation-at-first-cycle (ORAFIC)-cycling, which cycled first within 2.0-4.6 V to activate oxygen redox and then cycled within 2.0-4.2 V, this cathode exhibited better cycling stability compared to low-voltage (LV)-cycling of 2.0-4.2 V and high-voltage (HV)-cycling of 2.0-4.6 V. Using nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, inductively coupled plasma experiments, and X-ray diffraction, it is confirmed that ORAFIC-cycling stabilizes the crystal structure and distributions of Li ions in the TM and AM layers and reduces Li-ion loss, thus improving the cycling stability.
Collapse
Affiliation(s)
- Yuxin Liao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Feng
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Qi Yang
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Yu Jiang
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
8
|
Chen X, Zheng S, Liu P, Sun Z, Zhu K, Li H, Liu Y, Jiao L. Fluorine Substitution Promotes Air-Stability of P'2-Type Layered Cathodes for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205789. [PMID: 36420673 DOI: 10.1002/smll.202205789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
As one of the most promising cathode materials in sodium-ion batteries, manganese-based layered oxides have aroused wide attention due to their high specific capacity and plentiful reserves. However, they are plagued by poor air stability rooting in water/Na+ exchange and adverse structural reconstruction, hindering their practical applications. Herein, it is demonstrated that utilizing fluorine to substitute oxygen atoms can narrow the interlayer spacing of novel P'2-Na0.67 MnO1.97 F0.03 (NMOF) cathode material, which resists the attack of water molecules, significantly prolonging exposure time in air. Density functional theory (DFT) calculation results indicate that fluorine substitution alleviates the insertion of water molecules and spontaneous extraction of Na+ effectively. Benefiting from the structural modulation, NMOF can deliver a high specific capacity of 227.1 mAh g-1 at 20 mA g-1 and a promising capacity retention of 84.0% after 100 cycles at 200 mA g-1 . This facile and available strategy provides a feasible way to strengthen the air-stability and expands the scope of practical applications of layered oxide cathodes.
Collapse
Affiliation(s)
- Xuchun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pei Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiqin Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kunjie Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haixia Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongchang Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Wang Q, Liao Y, Jin X, Cheng C, Chu S, Sheng C, Zhang L, Hu B, Guo S, Zhou H. Dual Honeycomb‐Superlattice Enables Double‐High Activity and Reversibility of Anion Redox for Sodium‐Ion Battery Layered Cathodes. Angew Chem Int Ed Engl 2022; 61:e202206625. [DOI: 10.1002/anie.202206625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qi Wang
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Yuxin Liao
- Shanghai Key Laboratory of Magnetic Resonance State Key Laboratory of Precision Spectroscopy School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China
| | - Xin Jin
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Shiyong Chu
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance State Key Laboratory of Precision Spectroscopy School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China
| | - Shaohua Guo
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
10
|
Chang YX, Yu L, Xing X, Guo YJ, Xie ZY, Xu S. Ion Substitution Strategy of Manganese-Based Layered Oxide Cathodes for Advanced and Low-Cost Sodium Ion Batteries. CHEM REC 2022; 22:e202200122. [PMID: 35832018 DOI: 10.1002/tcr.202200122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Sodium ion batteries (SIBs) have recently been promising in the large-scale electric energy storage system, due to the low cost, abundant sodium resources. Mn-based layered oxide cathode materials have been widely investigated, because of the high theoretical specific capacity, low cost, and abundant reserves. However, their development is limited by the problems of Jahn-Teller distortion, Na+ /vacancy ordering, complex phase transitions, and irreversible anionic redox during cycling. Ion substitution strategy is one simple and effective way to regulate the crystal structure and boost sodium-storage performances of Mn-based cathode materials. In this review, we summarize the progress and mechanism of ion-substituted Mn-based oxides, establish a composition-crystal structure-electrochemical performance relationship, and also offer perspectives for guiding the design of high-performance Mn-based oxides for SIBs.
Collapse
Affiliation(s)
- Yu-Xin Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lianzheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuanxuan Xing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhi-Yu Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sailong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Dual Honeycomb‐Superlattice Enables Double‐High Activity and Reversibility of Anion Redox for Sodium‐Ion Battery Layered Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Hu B, Qiu Q, Li C, Shen M, Hu B, Tong W, Wang K, Zhou Q, Zhang Y, He Z, Zhang T, Chen C. Tailoring Anionic Redox Activity in a P2-Type Sodium Layered Oxide Cathode via Cu Substitution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28738-28747. [PMID: 35726835 DOI: 10.1021/acsami.2c02858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Na-ion cathode materials cycling at high voltages with long cycling life and high capacity are of imminent need for developing future high-energy Na-ion batteries. However, the irreversible anionic redox activity of Na-ion layered cathode materials results in structural distortion and poor capacity retention upon cycling. Herein, we develop a facile doping strategy by incorporating copper into the layered cathode material lattice to relieve the irreversible oxygen oxidation at high voltages. On the basis of a comprehensive comparison with the Cu-free material, both the over-oxidation of O2- to trapped molecular O2 and Mn-related Jahn-Teller distortion have been effectively inhibited by restraining both the oxygen activity and participation of Mn4+/Mn3+ redox activity. Not limited to discovering stable cycling behavior at high voltages after Cu substitution, our findings also highlight an effective strategy to stabilize the anionic redox activity and elucidate the stabilization mechanism of Cu substitution, thus paving the way for further improvement of layered oxide cathode materials for high-energy Na-ion batteries.
Collapse
Affiliation(s)
- Bei Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qing Qiu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Wei Tong
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230021, P. R. China
| | - Kunchan Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qingping Zhou
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanming Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiyan He
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Teng Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Changxin Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Ren H, Li Y, Ni Q, Bai Y, Zhao H, Wu C. Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106171. [PMID: 34783392 DOI: 10.1002/adma.202106171] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Sodium-ion batteries (SIBs) as the next generation of sustainable energy technologies have received widespread investigations for large-scale energy storage systems (EESs) and smart grids due to the huge natural abundance and low cost of sodium. Although the great efforts are made in exploring layered transition metal oxide cathode for SIBs, their performances have reached the bottleneck for further practical application. Nowadays, anionic redox in layered transition metal oxides has emerged as a new paradigm to increase the energy density of rechargeable batteries. Based on this point, in this review, the development history of anionic redox reaction is attempted to systematically summarize and provide an in-depth discussion on the anionic redox mechanism. Particularly, the major challenges of anionic redox and the corresponding available strategies toward triggering and stabilizing anionic redox are proposed. Subsequently, several types of sodium layered oxide cathodes are classified and comparatively discussed according to Na-rich or Na-deficient materials. A large amount of progressive characterization techniques of anionic oxygen redox is also summarized. Finally, an overview of the existing prospective and the future development directions of sodium layered transition oxide with anionic redox reaction are analyzed and suggested.
Collapse
Affiliation(s)
- Haixia Ren
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiao Ni
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huichun Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
14
|
Zhao C, Li C, Liu H, Qiu Q, Geng F, Shen M, Tong W, Li J, Hu B. Coexistence of (O 2) n- and Trapped Molecular O 2 as the Oxidized Species in P2-Type Sodium 3d Layered Oxide and Stable Interface Enabled by Highly Fluorinated Electrolyte. J Am Chem Soc 2021; 143:18652-18664. [PMID: 34699720 DOI: 10.1021/jacs.1c08614] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The interface stability of cathode/electrolyte for Na-ion layered oxides is tightly related to the oxidized species formed during the electrochemical process. Herein, we for the first time decipher the coexistence of (O2)n- and trapped molecular O2 in the (de)sodiation process of P2-Na0.66[Li0.22Mn0.78]O2 by using advanced electron paramagnetic resonance (EPR) spectroscopy. An unstable interface of cathode/electrolyte can thus be envisaged with conventional carbonate electrolyte due to the high reactivity of the oxidized O species. We therefore introduce a highly fluorinated electrolyte to tentatively construct a stable and protective interface between P2-Na0.66[Li0.22Mn0.78]O2 and the electrolyte. As expected, an even and robust NaF-rich cathode-electrolyte interphase (CEI) film is formed in the highly fluorinated electrolyte, in sharp contrast to the nonuniform and friable organic-rich CEI formed in the conventional lowly fluorinated electrolyte. The in situ formed fluorinated CEI film can significantly mitigate the local structural degeneration of P2-Na0.66[Li0.22Mn0.78]O2 by refraining the irreversible Li/Mn dissolutions and O2 release, endowing a highly reversible oxygen redox reaction. Resultantly, P2-Na0.66[Li0.22Mn0.78]O2 in highly fluorinated electrolyte achieves a high Coulombic efficiency (CE) of >99% and an impressive cycling stability in the voltage range of 2.0-4.5 V (vs Na+/Na) under room temperature (147.6 mAh g-1, 100 cycles) and at 45 °C (142.5 mAh g-1, 100 cycles). This study highlights the profound impact of oxidized oxygen species on the interfacial stability of cathode/electrolyte and carves a new path for building stable interface and enabling highly stable oxygen redox reaction.
Collapse
Affiliation(s)
- Chong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Liu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Qing Qiu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Wei Tong
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jingxin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
15
|
Liu H, Zhao C, Qiu Q, Hu B, Geng F, Li J, Tong W, Hu B, Li C. What Triggers the Voltage Hysteresis Variation beyond the First Cycle in Li-Rich 3d Layered Oxides with Reversible Cation Migration? J Phys Chem Lett 2021; 12:8740-8748. [PMID: 34478306 DOI: 10.1021/acs.jpclett.1c02185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, the structure-electrochemistry relationship of O2-Li5/6(Li0.2Ni0.2Mn0.6)O2 is deliberately studied by local-structure probes including site-sensitive 7Li pj-MATPASS NMR, quantitative 6Li magic-angle spinning NMR, and electron paramagnetic resonance (EPR). The extraction and reinsertion of LiTM (Li in the transition metal layer) during the first cycle are only partially reversible, bringing about the formation of tetrahedral LiLi (Li in the Li layer) that can be reversibly (de)intercalated after the activation cycle. The high-voltage oxygen redox process is preserved beyond the first cycle, further manifesting the structural superiority of O2 stacking over O3 stacking in bolstering oxygen redox. Moreover, the (de)lithiation process is highly reversible without pronounced structural hysteresis after the rearrangement of Li and transition metal upon the activation cycle, which can explain well the variation of voltage hysteresis from the first cycle to second cycle. These insights elucidate the imperfect structural stability of O2-type Li-rich layered oxides, which could be further improved by streamlining the returning path of LiTM.
Collapse
Affiliation(s)
- Hui Liu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Qing Qiu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bei Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Jingxin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Wei Tong
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Li
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|