1
|
Chatterjee S, Jana P, Mahato S, Bandyopadhyay S. Light-induced reversible switching of generation and extinction of an organic radical anion. Phys Chem Chem Phys 2024; 26:22472-22478. [PMID: 39145399 DOI: 10.1039/d4cp02810d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Radicals play a crucial role across various domains, ranging from serving as catalysts in chemical reactions to materials for spintronic applications. Currently, a major challenge for the chemists is the development of the next generation of organic radicals controllable by photons. To tackle this challenge, here we introduce a dyad system that combines a dimethyldihydropyrene (DHP) photochromic unit with a naphthalene diimide (NDI) moiety. This system forms a stable organic NDI-based radical-anion upon exposure to light in a solvent containing a small amount of an amine that acts as an electron donor. The radical anion formation has also been demonstrated with a chemical reductant. The photoisomerization of this photochromic system converts it into a less-conjugated and less-electron-rich form, affecting the generation of the radical as well as its stability. Consequently, light-induced isomerization effectively quenches the radical. Thus, the formation and existence of the radical can be adjusted by manipulating the photoisomerization of the photochromic unit under diverse light sources. Additionally, the system exhibits significant differences in emission in the radical and the closed-shell state, thereby offering a dual readout of the state of the molecule.
Collapse
Affiliation(s)
- Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Palash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Samyadeb Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
2
|
Kasuya K, Oketani R, Matsuda S, Sato H, Ishiwari F, Saeki A, Hisaki I. Photo-Responsive Hydrogen-Bonded Molecular Networks Capable of Retaining Crystalline Periodicity after Isomerization. Angew Chem Int Ed Engl 2024; 63:e202404700. [PMID: 38577718 DOI: 10.1002/anie.202404700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The molecular conformation, crystalline morphology, and properties of photochromic organic crystals can be controlled through photoirradiation, making them promising candidates for functional organic materials. However, photochromic porous molecular crystals with a networked framework structure are rare due to the difficulty in maintaining space that allows for photo-induced molecular motion in the crystalline state. This study describes a photo-responsive single crystal based on hydrogen-bonded (H-bonded) network of dihydrodimethylbenzo[e]pyrene derivative 4BDHP. A crystal composed of H-bonded undulate layers, 4BDHP-2, underwent photo-isomerization in the crystalline state due to loose stacking of the layers. Particularly, enantio-pure crystal (S,S)-4BDHP-2 allowed to reveal the structure of the photoisomerized crystal, in which the closed form (4BDHP) and open form (4CPD) were arranged alternately with keeping crystalline periodicity, although side reactions were also implied. The present proof-of-concept system of a photochromic framework that retains crystalline periodicity after photo-isomerization may provide new light-driven porous functional materials.
Collapse
Affiliation(s)
- Koki Kasuya
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Souta Matsuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akisima, 196-8666, Tokyo, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| |
Collapse
|
3
|
Ziani Z, Cobo S, Berthet N, Royal G. Optical modulation of cell nucleus penetration and singlet oxygen release of a switchable platinum complex. iScience 2024; 27:108704. [PMID: 38299025 PMCID: PMC10829881 DOI: 10.1016/j.isci.2023.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
The activation of anticancer molecules with visible light constitutes an elegant strategy to target tumors and to improve the selectivity of treatments. In this context, we report here a visible-light activatable bis-platinum complex (DHP-Pt2) incorporating an organic photo-switchable ligand based on the dimethyldihydropyrene moiety. Illumination of this metal complex with red light (660 nm) under air readily produces the corresponding endoperoxide form (CPDO2-Pt2). These two metal complexes exhibit different DNA binding properties and, more importantly, we show that only the photogenerated CPDO2-Pt2 is able to penetrate into cancer cell nuclei, where it is then capable of releasing cytotoxic singlet oxygen. This study represents the first proof-of-concept showing that dimethyldihydropyrene derivatives can be used to transport and deliver singlet oxygen into cancer cell nuclei upon visible-light activation.
Collapse
Affiliation(s)
- Zakaria Ziani
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Saioa Cobo
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Guy Royal
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
4
|
Chatterjee S, Molla S, Ahmed J, Bandyopadhyay S. Light-driven modulation of electrical conductance with photochromic switches: bridging photochemistry with optoelectronics. Chem Commun (Camb) 2023; 59:12685-12698. [PMID: 37814882 DOI: 10.1039/d3cc04269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Photochromic conducting molecules have emerged because of their unique capacity to modulate electrical conductivity upon exposure to light, toggling between high and low conductive states. This unique amalgamation has unlocked novel avenues for the application of these materials across diverse areas in optoelectronics and smart materials. The fundamental mechanism underpinning this phenomenon is based on the light-driven isomerization of conjugated π-systems which influences the extent of conjugation. The photoisomerization process discussed here involves photochromic switches such as azobenzenes, diarylethenes, spiropyrans, dimethyldihydropyrenes, and norbornadiene. The change in the degree of conjugation alters the charge transport in both single molecules and bulk states in solid samples or solutions. This article discusses a number of recent examples of photochromic conducting systems and the challenges and potentials of the field.
Collapse
Affiliation(s)
- Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Sariful Molla
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Jakir Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
5
|
Gödtel P, Starrett J, Pianowski ZL. Heterocyclic Hemipiperazines: Water-Compatible Peptide-Derived Photoswitches. Chemistry 2023; 29:e202204009. [PMID: 36790823 DOI: 10.1002/chem.202204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Hemipiperazines are a recently discovered class of peptide-derived molecular photoswitches with high biocompatibility and therapeutic potential. Here, for the first time we describe photochromism of heterocyclic hemipiperazines. They demonstrate long thermal lifetimes, and enlarged band separation between photoisomers. Efficient photoisomerization occurs under aqueous conditions, although with a need for organic co-solvent. Bidirectional switching with visible light is observed for an extended aromatic system.
Collapse
Affiliation(s)
- Peter Gödtel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Jessica Starrett
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology KIT, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology KIT, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Yu SH, Hassan SZ, So C, Kang M, Chung DS. Molecular-Switch-Embedded Solution-Processed Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203401. [PMID: 35929102 DOI: 10.1002/adma.202203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent improvements in the performance of solution-processed semiconductor materials and optoelectronic devices have shifted research interest to the diversification/advancement of their functionality. Embedding a molecular switch capable of transition between two or more metastable isomers by light stimuli is one of the most straightforward and widely accepted methods to potentially realize the multifunctionality of optoelectronic devices. A molecular switch embedded in a semiconductor can effectively control various parameters such as trap-level, dielectric constant, electrical resistance, charge mobility, and charge polarity, which can be utilized in photoprogrammable devices including transistors, memory, and diodes. This review classifies the mechanism of each optoelectronic transition driven by molecular switches regardless of the type of semiconductor material or molecular switch or device. In addition, the basic characteristics of molecular switches and the persisting technical/scientific issues corresponding to each mechanism are discussed to help researchers. Finally, interesting yet infrequently reported applications of molecular switches and their mechanisms are also described.
Collapse
Affiliation(s)
- Seong Hoon Yu
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Roemer M, Gillespie A, Jago D, Costa-Milan D, Alqahtani J, Hurtado-Gallego J, Sadeghi H, Lambert CJ, Spackman PR, Sobolev AN, Skelton BW, Grosjean A, Walkey M, Kampmann S, Vezzoli A, Simpson PV, Massi M, Planje I, Rubio-Bollinger G, Agraït N, Higgins SJ, Sangtarash S, Piggott MJ, Nichols RJ, Koutsantonis GA. 2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. J Am Chem Soc 2022; 144:12698-12714. [PMID: 35767015 DOI: 10.1021/jacs.2c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.
Collapse
Affiliation(s)
- Max Roemer
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Angus Gillespie
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Jago
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Costa-Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Jehan Alqahtani
- Department of Physics, King Khalid University, Abha 62529, Saudi Arabia
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Juan Hurtado-Gallego
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Peter R Spackman
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Alexandre N Sobolev
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Brian W Skelton
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Arnaud Grosjean
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark Walkey
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sven Kampmann
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Inco Planje
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Gabino Rubio-Bollinger
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Nicolás Agraït
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Sara Sangtarash
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - George A Koutsantonis
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Alfi AA, Al-Qahtani SD, Alatawi NM, Attar RMS, Abu Al-Ola K, Habeebullah TM, El-Metwaly NM. Simple preparation of novel photochromic polyvinyl alcohol/carboxymethyl cellulose security barcode incorporated with lanthanide-doped aluminate for anticounterfeiting applications. LUMINESCENCE 2022; 37:1152-1161. [PMID: 35484850 DOI: 10.1002/bio.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Forgery and low-quality products pose a danger to the society. Therefore, there are increasing demands for the production of easy to recognize and difficult to copy anti-counterfeiting materials. Products with smart photochromic and fluorescent properties can change color and emission spectra responding to a light source. In this context, we devised a straightforward preparation of luminescent polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) nanocomposite to function as a transparent labeling film. The lanthanide-doped aluminate (LdA) was prepared in the nanoparticle form to indicate diameters of 35-115 nm. Different ratios of the lanthanide-doped aluminate (LdA) were physically dispersed in the PVA/CMC nanocomposite label film to provide photochromic, ultraviolet protection, antimicrobial activity and hydrophobic properties. Fluorescence peaks were detected at 365 and 519 nm to indicate a color change to green. As a result of increasing the phosphor ratio, improved superhydrophobic activity was achieved as the contact angle increased from 126.1° to 146.0° without affecting the film original physical and mechanical properties. Both UV protection and antibacterial activity were also investigated. The films showed quick and reversible photochromic response without fatigue. The current strategy reported the development of photochromic smart label that is transparent, cost-effective and flexible. As a result, numerous anticounterfeiting products can benefit from the current label for a better market. LdA-loaded PVA/CMC films demonstrated antibacterial activity between poor, good, very good and outstanding as the percentage of LdA in the film matrix increased. The current film can be applied as a transparent photochromic security barcode for anticounterfeiting applications and smart packaging.
Collapse
Affiliation(s)
- Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Roba M S Attar
- Department of Microbiology, Faculty of Science, University of Jeddah, P.O. Box 2360S, Saudi Arabia
| | - Khulood Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Saudi Arabia
| | - Turki M Habeebullah
- Department of Environment and Health Research, Custodian of two holy mosques Institute for Hajj and Umrah Research, Umm Al Qura University, Makkah
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
10
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|