1
|
Du X, Wang H, Wang Y, Cao Z, Yang L, Shi X, Zhang X, He C, Gu X, Liu N. An Ultra-Conductive and Patternable 40 nm-Thick Polymer Film for Reliable Emotion Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403411. [PMID: 38804620 DOI: 10.1002/adma.202403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hai Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhiqiang Cao
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Leyi Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
2
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Kumar S, Seo Y. Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions, Fabrication Methods, and Design Strategies. SMALL METHODS 2023:e2300908. [PMID: 37821417 DOI: 10.1002/smtd.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Indexed: 10/13/2023]
Abstract
Flexible transparent conductive electrodes (FTCEs) constitute an indispensable component in state-of-the-art electronic devices, such as wearable flexible sensors, flexible displays, artificial skin, and biomedical devices, etc. This review paper offers a comprehensive overview of the fabrication techniques, growth modes, material dimensions, design, and their impacts on FTCEs fabrication. The growth modes, such as the "Stranski-Krastanov growth," "Frank-van der Merwe growth," and "Volmer-Weber growth" modes provide flexibility in fabricating FTCEs. Application of different materials including 0D, 1D, 2D, polymer composites, conductive oxides, and hybrid materials in FTCE fabrication, emphasizing their suitability in flexible devices are discussed. This review also delves into the design strategies of FTCEs, including microgrids, nanotroughs, nanomesh, nanowires network, and "kirigami"-inspired patterns, etc. The pros and cons associated with these materials and designs are also addressed appropriately. Considerations such as trade-offs between electrical conductivity and optical transparency or "figure of merit (FoM)," "strain engineering," "work function," and "haze" are also discussed briefly. Finally, this review outlines the challenges and opportunities in the current and future development of FTCEs for flexible electronics, including the improved trade-offs between optoelectronic parameters, novel materials development, mechanical stability, reproducibility, scalability, and durability enhancement, safety, biocompatibility, etc.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering and HMC, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
4
|
Wang Z, Wu Y, Zhu B, Chen Q, Zhang Y, Xu Z, Sun D, Lin L, Wu D. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4713-4723. [PMID: 36623166 DOI: 10.1021/acsami.2c18814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Qixiang Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Daoheng Sun
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, United States
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| |
Collapse
|
5
|
Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. BIOSENSORS 2023; 13:bios13010101. [PMID: 36671936 PMCID: PMC9855417 DOI: 10.3390/bios13010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
Recently, advanced electrodes have been developed, such as semi-dry, dry contact, dry non-contact, and microneedle array electrodes. They can overcome the issues of wet electrodes and maintain high signal quality. However, the variations in these electrodes are still unclear and not explained, and there is still confusion regarding the feasibility of electrodes for different application scenarios. In this review, the physical features and electroencephalogram (EEG) signal performances of these advanced EEG electrodes are introduced in view of the differences in contact between the skin and electrodes. Specifically, contact features, biofeatures, impedance, signal quality, and artifacts are discussed. The application scenarios and prospects of different types of EEG electrodes are also elucidated.
Collapse
|
6
|
High stretchability and conductive stability of flexible hybrid electronic materials for smart clothing. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
7
|
Boncel S, Jędrysiak RG, Czerw M, Kolanowska A, Blacha AW, Imielski M, Jóźwiak B, Dzida MH, Greer HF, Sobotnicki A. Paintable Carbon Nanotube Coating-Based Textronics for Sustained Holter-Type Electrocardiography. ACS APPLIED NANO MATERIALS 2022; 5:15762-15774. [PMID: 36338322 PMCID: PMC9623549 DOI: 10.1021/acsanm.2c03904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A growing population suffering from or at high risk of developing cardiovascular diseases can benefit from rapid, precise, and readily available diagnostics. Textronics is an interdisciplinary approach for designing and manufacturing high-performance flexible electronics integrated with textiles for various applications, with electrocardiography (ECG) being the most convenient and most frequently used diagnostic technique for textronic solutions. The key challenges that still exist for textronics include expedient manufacturing, adaptation to human subjects, sustained operational stability for Holter-type data acquisition, reproducibility, and compatibility with existing solutions. The present study demonstrates conveniently paintable ECG electroconductive coatings on T-shirts woven from polyester or 70% polyamide and 30% polyester. The up to 600-μm-thick coatings encompass working electrodes of low resistivity 60 Ω sq-1 sheathed in the insulated pathways-conjugable with a wireless, multichannel ECG recorder. Long (800 μm) multiwalled carbon nanotubes, with scalable reproducibility and purity (18 g per round of synthesis), constituted the electroactive components and were embedded into a commercially available screen-printing acrylic base. The resulting paint had a viscosity of 0.75 Pa·s at 56 s-1 and 25 °C and was conveniently applied using a paintbrush, making this technique accessible to manufacturers. The amplified and nondigitally processed ECG signals were recorded under dry-skin conditions using a certified ECG recorder. The system enabled the collection of ECG signals from two channels, allowing the acquisition of cardiac electrical activity on six ECG leads with quality at par with medical diagnostics. Importantly, the Holter-type ECG allowed ambulatory recording for >24 h under various activities (sitting, sleeping, walking, and running) in three male participants. The ECG signal was stable for >5 cycles of washing, a level of stability not reported yet previously. The developed ECG-textronic application possesses acceptable and reproducible characteristics, making this technology a suitable candidate for further testing in clinical trials.
Collapse
Affiliation(s)
- Sławomir Boncel
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Rafał G. Jędrysiak
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Marek Czerw
- Łukasiewicz
Research Network Institute of Medical Technology and Equipment, Roosevelta 118, 41-800 Zabrze, Poland
- Department
of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| | - Anna Kolanowska
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
- Biotechnology
Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Anna W. Blacha
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Maciej Imielski
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Bertrand Jóźwiak
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Marcina Strzody 7, 44-100 Gliwice, Poland
| | - Marzena H. Dzida
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Heather F. Greer
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Aleksander Sobotnicki
- Łukasiewicz
Research Network Institute of Medical Technology and Equipment, Roosevelta 118, 41-800 Zabrze, Poland
| |
Collapse
|
8
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
10
|
Wang Y, Su Y, Zhang Y, Chen M. High-Voltage Wave Induced a Unique Structured Percolation Network with a Negative Gauge Factor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5661-5672. [PMID: 35050585 DOI: 10.1021/acsami.1c23741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocomposite percolation networks have attracted increasing attention in the field of wearable devices. Generally, the large junction resistance caused by the small contact area in the percolation network is considered as the bottleneck in preparing high-performance electronics. In such electronics, an applied strain will lead to deformation on the fiber junction, subsequently increasing the sheet resistance. However, taking advantage of the dominant role of the contact resistance in the percolation network, the overall resistance of the network can be controlled by skillfully adjusting the contact area. Here, we designed a combined gold-polycaprolactone (Au-PCL) network with a unique buckling net structure. When the thickness of the gold nanolayer is 50 nm, the network shows typical percolation behavior with high transparency (93%), good conductivity (20 Ω/sq), and good ductility. Moreover, the networks show a unique positive relationship between the conductivity and strain due to the variation of contact resistance. By designing different waving angles, the network can be used as a dynamic strain sensor with a tunable gauge factor ranging from -0.8 to -1.8. Overall, these highly stretchable and transparent Au-PCL networks show promising applications in the field of high-performance electronic and optoelectronic nanodevices.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Yingchun Su
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Yanping Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
|
12
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|