1
|
Yatmeidhy AM, Gohda Y. Magnetic-anisotropy modulation in multiferroic heterostructures by ferroelectric domains from first principles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2391268. [PMID: 39188550 PMCID: PMC11346327 DOI: 10.1080/14686996.2024.2391268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
First-principles calculations incorporating spin-orbit coupling are presented for a multiferroic material as a ferromagnetic/ferroelectric junction. We simulate the interface effect that cannot be described by the single-phase bulk. The in-plane uniaxial magnetic-anisotropy of Co2FeSi is observed when the ferroelectric domain is polarized parallel to the interface, whereas the magnetic anisotropy is significantly different in the plane for the electrical polarization perpendicular to the interface. While the single-phase effect dominates the main part of the modulation of the magnetic anisotropy, symmetry breaking due to the interfacial effect is observed in the ferromagnetic ultrathin films. The origin of the modulated magnetic-anisotropy can be attributed to the shifting of specific energy bands in Co2FeSi when the ferroelectric domain is modified.
Collapse
Affiliation(s)
- Amran Mahfudh Yatmeidhy
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshihiro Gohda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Nakagawa T, Ding Y, Bu K, Lü X, Liu H, Moliterni A, Popović J, Mihalik M, Jagličić Z, Mihalik M, Vrankić M. Photophysical Behavior of Triethylmethylammonium Tetrabromoferrate(III) under High Pressure. Inorg Chem 2023; 62:19527-19541. [PMID: 38044824 DOI: 10.1021/acs.inorgchem.3c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The pressure-induced properties of hybrid organic-inorganic ferroelectrics (HOIFs) with tunable structures and selectable organic and inorganic components are important for device fabrication. However, given the structural complexity of polycrystalline HOIFs and the limited resolution of pressure data, resolving the structure-property puzzle has so far been the exception rather than the rule. With this in mind, we present a collection of in situ high-pressure data measured for triethylmethylammonium tetrabromoferrate(III), ([N(C2H5)3CH3][FeBr4]) (EMAFB) by unraveling its flexible physical and photophysical behavior up to 80 GPa. Pressure-driven X-ray diffraction and Raman spectroscopy disclose its soft and reversible structural distortion, creating room for delicate band gap modulation. During compression, orange turns dark red at ∼2 GPa, and further compression results in piezochromism, leading to opaque black, while decompressed EMAFB appears in an orange hue. Assuming that the mechanical softness of EMAFB is the basis for reversible piezochromic control, we present alternations in the electronic landscape leading to a 1.22 eV band narrowing at 20.3 GPa while maintaining the semiconducting character at 72 GPa. EMAFB exhibits an emission enhancement, manifested by an increase of photoluminescence up to 17.3 GPa, correlating with the onsets of structural distortion and amorphization. The stimuli-responsive behavior of EMAFB, exhibiting stress-activated modification of the electronic structure, can enrich the physical library of HOIFs suitable for pressure-sensing technologies.
Collapse
Affiliation(s)
- Takeshi Nakagawa
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Yang Ding
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Kejun Bu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Xujie Lü
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Haozhe Liu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Anna Moliterni
- Institute of Crystallography (IC)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Jasminka Popović
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marian Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Matúš Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Martina Vrankić
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|