1
|
Chen SZ, Chen JS, Liu XP, Mao CJ, Jin BK. A sandwich-type photoelectrochemical biosensor based on Ru(bpy) 32+ sensitized In 2S 3 for aflatoxin B 1 detection. Analyst 2024; 149:3850-3856. [PMID: 38855851 DOI: 10.1039/d4an00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.
Collapse
Affiliation(s)
- Si-Zhe Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui, University, Hefei 230601, P. R. China.
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui, University, Hefei 230601, P. R. China.
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui, University, Hefei 230601, P. R. China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui, University, Hefei 230601, P. R. China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui, University, Hefei 230601, P. R. China.
| |
Collapse
|
2
|
Chen Q, Wang S, Miao B, Chen Q. Dual p-n Z-scheme heterostructure boosted superior photoreduction CO 2 to CO, CH 4 and C 2H 4 in In 2S 3/MnO 2/BiOCl photocatalyst. J Colloid Interface Sci 2024; 663:1005-1018. [PMID: 38452542 DOI: 10.1016/j.jcis.2024.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The creation of a Z-scheme heterojunction is a sophisticated strategy to enhance photocatalytic efficiency. In our study, we synthesized an In2S3/MnO2/BiOCl dual Z-scheme heterostructure by growing BiOCl nanoplates on the sheets of In2S3 nanoflowers, situated on the surface of MnO2 nanowires. This synthesis involved a combination of hydrothermal and solution combustion methods. Experiments and density functional theory (DFT) calculations demonstrated that the In2S3/MnO2/BiOCl composite exhibited notable photo reduction performance and photocatalytic stability. This was attributed to the pivotal roles of BiOCl and MnO2 in the composite, acting as auxiliaries to enhance the electronic structure and facilitate the adsorption/activation capacity of CO2 and H2O. The yield rates of CO, CH4, and C2H4 over In2S3/MnO2/BiOCl as the catalyst were 3.94, 5.5, and 3.64 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis revealed that the dual Z-scheme heterostructure, with its oxygen vacancies and large surface area, enhanced CO2 absorption and active sites on the nanoflower/nanowire intersurfaces. Consequently, the dual Z-scheme charge transfer pathway provided efficient channels for boosting electron transfer and charge separation, resulting in high C2H4, CH4, and CO yields of formed and exihibits an promising photoreduction rate of CO2 to CO (51.2 µmol/g.h), CH4 (42.4 µmol/g.h) and C2H4 (63.2 µmol/g.h), respectively. DFT, in situ Diffuse reflectance infrared fourier transform spectroscopy, and temperature-programmed desorption tests were employed to verify the intermediates pathway. The study proposed a potential photocatalytic mechanism based on these findings.
Collapse
Affiliation(s)
- Qiuling Chen
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology.
| | - Shun Wang
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Baoji Miao
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology
| | - Qiuping Chen
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Torino, Italy
| |
Collapse
|
3
|
Zhang L, Xia S, Zhang X, Yao Y, Zhang Y, Chen S, Chen Y, Yan J. Low-Temperature Synthesis of Mesoporous Half-Metallic High-Entropy Spinel Oxide Nanofibers for Photocatalytic CO 2 Reduction. ACS NANO 2024. [PMID: 38334301 DOI: 10.1021/acsnano.3c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
High-entropy oxides (HEOs) exhibit great prospects owing to their varied composition, chemical adaptability, adjustable light-absorption ability, and strong stability. In this study, we report a strategy to synthesize a series of porous high-entropy spinel oxide (HESO) nanofibers (NFs) at a low temperature of 400 °C by a sol-gel electrospinning technique. The key lies in selecting six acetylacetonate salt precursors with similar coordination abilities, maintaining a high-entropy disordered state during the transformation from stable sols to gel NFs. The as-synthesized HESO NFs of (NiCuMnCoZnFe)3O4 show a high specific surface area of 66.48 m2/g, a diverse elemental composition, a dual bandgap, half-metallicity property, and abundant defects. The diverse elements provide various synergistic catalytic sites, and oxygen vacancies act as active sites for electron-hole separation, while the half-metallicity and dual-bandgap structure offer excellent light absorption ability, thus expanding its applicability to a wide range of photocatalytic processes. As a result, the HESO NFs can efficiently convert CO2 into CH4 and CO with high yields of 8.03 and 15.89 μmol g-1 h-1, respectively, without using photosensitizers or sacrificial agents.
Collapse
Affiliation(s)
- Liang Zhang
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Shuhui Xia
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaohua Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, People's Republic of China
| | - Yonggang Yao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yuanyuan Zhang
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Shuo Chen
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yuehui Chen
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jianhua Yan
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Zhao W, Qian C, Cui Y, Li Y, Chen W, Li J, Huang H, Li X, Zhu X. Facile construction of a sulfur vacancy defect-decorated CoS x@In 2S 3 core/shell heterojunction for efficient visible-light-driven photocatalytic hydrogen evolution. Dalton Trans 2023; 52:12899-12908. [PMID: 37642527 DOI: 10.1039/d3dt02213g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photoinduced electron-separation and -transport processes are two independent crucial factors for determining the efficiency of photocatalytic hydrogen production. Herein, a sulfur vacancy defect-decorated CoSx@In2S3 (CoSx@VS-In2S3) core/shell heterojunction photocatalyst was synthesized via an in situ sulfidation method followed by a liquid-phase corrosion process. Photocatalytic hydrogen evolution experiments showed that the CoSx@VS-In2S3 nanohybrids delivered an attractive photocatalytic activity of 4.136 mmol h-1 g-1 under visible-light irradiation, which was 8.23 times higher than that of the pristine In2S3 samples. As expected, VS could enhance the charge-separation efficiency of In2S3 through rearranging the electrons of the In2S3 basal plane, in addition to improving the electron-transfer efficiency, as visually verified by transient absorption spectroscopy. Mechanism studies based on density functional theory calculations confirmed that the In atoms adjacent to VS played a key role in the translation, rotation, and transformation of electrons for water reduction. This scalable strategy focused on defect engineering paves a new avenue for the design and assembly of 2D core/shell heterostructures for efficient and robust water-splitting photocatalysts.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Weixian Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China
| | - Canhui Qian
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, P. R. China.
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Wei Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province, 318000, P. R. China
| | - Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
5
|
Mo QL, Xu SR, Li JL, Shi XQ, Wu Y, Xiao FX. Solar-CO 2 -to-Syngas Conversion Enabled by Precise Charge Transport Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300804. [PMID: 37183292 DOI: 10.1002/smll.202300804] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Indexed: 05/16/2023]
Abstract
The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.
Collapse
Affiliation(s)
- Qiao-Ling Mo
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Shu-Ran Xu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Jia-Le Li
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Xiao-Qiang Shi
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Yue Wu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
6
|
Ma X, Li D, Jin H, Zeng X, Qi J, Yang Z, You F, Yuan F. Urchin-like band-matched Fe 2O 3@In 2S 3 hybrid as an efficient photocatalyst for CO 2 reduction. J Colloid Interface Sci 2023; 648:1025-1033. [PMID: 37343489 DOI: 10.1016/j.jcis.2023.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Herein, an urchin-like Fe2O3@In2S3 hybrid composite is designed and synthesized using a facile process. The composite efficiently harvests light in both the ultraviolet and visible regions, and the unique hierarchical structure provides several advantages for photocatalytic applications: (i) a suitable band-matching structure and broadband-light absorbing capacity enable the reduction of CO2 into hydrocarbon, (ii) the extensive network of interfacial contact between nano-sized Fe2O3 and In2S3 significantly increases the separation of charge carriers and enhances the utilization of photogenerated electron-hole pairs, and (iii) an abundance of surface oxygen vacancies provide numerous active sites for CO2 molecule adsorption. The optimized Fe2O3@In2S3 composite generated CO from the photocatalytic reduction of CO2 at a rate of 42.83 μmol·g-1·h-1, and no signs of deactivation were observed during continued testing for 32 h under 300 W Xe lamp irradiation.
Collapse
Affiliation(s)
- Xiaohong Ma
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Danyang Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Huacheng Jin
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xi Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jian Qi
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zongxian Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feifei You
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Fangli Yuan
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
7
|
Cheng Y, Li Z, Tang T, Wang X, Hu X, Xu K, Hung Chu M, Hoa ND, Xie H, Yu H, Chen H, Ou JZ. 3D self-assembled indium sulfide nanoreactor for in-situ surface covalent functionalization: Towards high-performance room-temperature NO 2 sensing. J Colloid Interface Sci 2023; 645:86-95. [PMID: 37146382 DOI: 10.1016/j.jcis.2023.04.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Thiol functionalization of two-dimensional (2D) metal sulfides has been demonstrated as an effective approach to enhance the sensing performances. However, most thiol functionalization is realized by multiple-step approaches in liquid medium and depends on the dispersity of 2D materials. Here, we utilize a three-dimensional (3D) In2S3 nano-porous structure that self-assembled from 2D components as the nanoreactor, in which the surface-absorbed thiol molecules from the chemical residues of the nanoreactor are used for the in-situ covalent functionalization. Such functionalization is realized by facile heat the nanoreactor at 100 °C, leading to the recombing sulfur vacancies with thiol-terminated groups. The NO2 sensing performances of such functionalized nanoreactor are investigated at room temperature, in which In2S3-100 exhibits a response magnitude of 21.5 towards 10 ppm NO2 with full reversibility, high selectivity, and excellent repeatability. Such high-performance gas sensors can be attributed to the additional electrons that transferring from the functional group into the host, thus significantly modifying the electronic band structure. This work provides a guideline for the facile in-situ functionalization of metal sulfides and an efficient strategy for the high performances gas sensors without external stimulus.
Collapse
Affiliation(s)
- Yinfen Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China.
| | - Tao Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuanxing Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinyi Hu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Manh Hung Chu
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - Nguyen Duc Hoa
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Engineering, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
8
|
Liang S, Jin D, Fu Y, Lin Q, Zhang R, Wang X. Interfacial elaborating In 2O 3-decorated ZnO/reduced graphene oxide/ZnS heterostructure with robust internal electric field for efficient solar-driven hydrogen evolution. J Colloid Interface Sci 2023; 635:128-137. [PMID: 36584613 DOI: 10.1016/j.jcis.2022.12.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Solar-driven hydrogen evolution over ZnO-ZnS heterostructures is considered as a promising strategy for sustainable-energy issues. However, the industrialization of this strategy is still constrained by suppressed carrier migration, rapid charge recombination, and the inevitable utilization of noble-metal particles. Herein, we envision a novel strategy of successfully introducing In2O3 into the ZnO-ZnS heterostructure. Benefiting from the optimized internal electric field and the charge carrier migration mode based on the direct Z-scheme, the interfacial elaborating In2O3-decorated ZnO/reduced graphene oxide (rGO)/ZnS heterostructure manifests smooth charge migration, suppressed electron-hole pair recombination, and increased surface active sites. More importantly, the in situ introduction of In2O3 optimizes the construction of the internal electric field, favoring directional light-triggered carrier migration. As a result, the light-induced electrons generated from the heterostructure can be efficiently employed for the hydrogen evolution reaction. Hence, this work would shed light on the in situ fabrication of noble-metal-free photocatalysts for solar-driven water splitting.
Collapse
Affiliation(s)
- Shudong Liang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Nanchang 330031, China
| | - Dai Jin
- School of Future Technology, Nanchang University, 999# Xuefu Road, Nanchang 330031, China
| | - Yongjun Fu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Nanchang 330031, China
| | - Qingzhuo Lin
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Nanchang 330031, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Nanchang 330031, China.
| | - Xuewen Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999# Xuefu Road, Nanchang 330031, China.
| |
Collapse
|
9
|
Trang TNQ, Bao NTG, Trinh NTP, Thu VTH. Synergistic combination of Au-loaded and the facet of 3D SrTiO3 nanocube-based charge carrier in plasmonic photocatalysis. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Guo J, Song L, Chen M, Mo F, Yu W, Fu Y. Schottky-functionalized Z-scheme heterojunction: Improved photoelectric conversion efficiency and immunosensing. Biosens Bioelectron 2023; 222:115000. [PMID: 36525709 DOI: 10.1016/j.bios.2022.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Designing photovoltaic materials with good photoelectric activity is the crucial to boost the sensitivity of photoelectrochemical (PEC) biosensors. To meet this concern, a Schottky-functionalized direct Z-scheme heterojunction photovoltaic material was proposed by electrodeposition of gold nanoparticles on two kinds of bismuth oxyhalide composites surface (bismuth oxybromide and bismuth oxyiodide with different but matched band gaps) (depAu/BiOI/BiOBr). Specifically, synergistic effect was achieved through the direct Z-scheme heterojunction formed by BiOBr and BiOI as well as the gold Schottky junction, resulting in the enhanced light harvest and photoelectric conversion efficiency. Meanwhile, combined with sandwich immunotechnology, a "signal-off" PEC biosensor was fabricated for highly sensitive detection of carcinoembryonic antigen (CEA). In which, using depAu/BiOI/BiOBr modified glassy carbon electrodes both as the photoactive sensing interface and capture antibody loading matrix, polyethyleneimine copper complex encapsulated gold nanoclusters labeled detection antibody (Ab2-Au@PEI-Cu) as the quencher, the photocurrent decreased with the increasing target CEA introduced by sandwich immune reaction. The proposed smart PEC immunoassay platform exhibited a wide detection range (1.0 fg/mL-2.0 ng/mL) and a detection limit as low as 0.11 fg/mL with favorable selectivity and stability. In addition, this PEC sensing strategy can be easily extended for other tumor marker analysis, which offers a new perspective of using multiple bismuth oxyhalide as photoactive materials for early diseases diagnosis.
Collapse
Affiliation(s)
- Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wanqing Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Li X, Zhang J, Wang Z, Fu J, Li S, Dai K, Liu M. Interfacial C-S Bonds of g-C 3 N 4 /Bi 19 Br 3 S 27 S-Scheme Heterojunction for Enhanced Photocatalytic CO 2 Reduction. Chemistry 2023; 29:e202202669. [PMID: 36251746 DOI: 10.1002/chem.202202669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/29/2022]
Abstract
Step-scheme (S-scheme) heterojunctions have been extensively studied in photocatalytic carbon dioxide (CO2 ) reduction due to their excellent charge separation and high redox ability. The built-in electric field at the interface of a S-scheme heterojunction serves as the driving force for charge transfer, however, the poor interfacial contact greatly restricts the carrier migration rate. Herein, we synthesized the g-C3 N4 /Bi19 Br3 S27 S-scheme heterostructure through in situ deposition of Bi19 Br3 S27 (BBS) on porous g-C3 N4 (P-CN) nanosheets. The C-S bonds formed at the interface help to enhance the built-in electric field, thereby promoting the charge transfer and separation. As a result, the CO2 reduction reaction performance of 10 %Bi19 Br3 S27 /g-C3 N4 (BBS/P-CN) reaches 32.78 μmol g-1 h-1 , which is 341.4 and 18.7 times higher than that of pure BBS and P-CN, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) prove the presence of chemical bonds (C-S) between the P-CN and BBS. The S-scheme charge-transfer mechanism was analyzed via XPS and density functional theory (DFT) calculations. This work provides a new idea for designing heterojunction photocatalysts with interfacial chemical bonds to achieve high charge-transfer and catalytic activity.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Zhongliao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for, Carbon Dioxide Resource Utilization, School of Physical and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Simin Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Kai Dai
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for, Carbon Dioxide Resource Utilization, School of Physical and Electronics, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
12
|
Wei Y, Zhang Y, Chen Y, Wang F, Cao Y, Guan W, Li X. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO 2 Catalysts for Efficient Oxidation of HMF to FDCA. CHEMSUSCHEM 2022; 15:e202101983. [PMID: 34644006 DOI: 10.1002/cssc.202101983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Developing an efficient catalyst to upgrade 5-hydroxymethylfurfural (HMF) to high-value-added downstream chemicals is of great significance in biomass conversion. Nanorod (110)-, nanocube (100)-, and nanooctaheron (111)-CeO2 -supported Au nanoparticles were prepared to investigate the intrinsic effect of CeO2 crystal faces on the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA). The experimental results and density functional theory calculation revealed that the concentration of oxygen vacancy (VO ) for exposed specific crystal faces was crucial to the oxygen adsorption ability, and Au/nanorod-CeO2 with the highest VO concentration promoted the formation of more oxygen active species (superoxide radical) on CeO2 (110) crystal face than (100) and (111) crystal faces. Besides, the higher VO concentration could provide a strong adsorption ability of HMF, greatly boosting the activation of HMF. Thus, these results led to a superior catalytic activity for HMF oxidation over Au/nanorod-CeO2 (FDCA yield of 96.5 %). In-situ Fourier-transform (FT)IR spectroscopy uncovered the HMF oxidation pathway, and the possible catalytic mechanism was proposed. The deep insight into the role of regulation for crystal faces provides a basis for the rational design of highly active facets for the oxidation of HMF and related reactions.
Collapse
Affiliation(s)
- Yanan Wei
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yunlei Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yao Chen
- School of the Environment and Safety, Jiangsu University, Zhenjiang, P. R. China
| | - Fang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yu Cao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wen Guan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
13
|
Aggarwal M, Shetti NP, Basu S, Aminabhavi TM. Two-dimensional ultrathin metal-based nanosheets for photocatalytic CO 2 conversion to solar fuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114916. [PMID: 35367674 DOI: 10.1016/j.jenvman.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Artificially simulated photosynthesis has created substantial curiosity as the majority of efforts in this arena have been aimed to upsurge solar fuel efficiencies for commercialization. The layered inorganic 2D nanosheets offer considerably higher tunability of their chemical surface, physicochemical properties and catalytic activity. Despites the intrinsic advantages of such metal-based materials viz., metal oxides, transition metal dichalcogenides, metal oxyhalides, metal organic frameworks, layered double hydroxide, MXene's, boron nitride, black phosphorous and perovskites, studies on such systems are limited for applications in photocatalytic CO2 reduction. The role of metal-based layers for CO2 conversion and new strategies such as surface modifications, defect generation and heterojunctions to optimize their functionalities are discussed in this review. Research prospects and technical challenges for future developments of layered 2D metal-based nanomaterials are critically discussed.
Collapse
Affiliation(s)
- Maansi Aggarwal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India.
| |
Collapse
|
14
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Zhu J, Shao W, Li X, Jiao X, Zhu J, Sun Y, Xie Y. Asymmetric Triple-Atom Sites Confined in Ternary Oxide Enabling Selective CO 2 Photothermal Reduction to Acetate. J Am Chem Soc 2021; 143:18233-18241. [PMID: 34677975 DOI: 10.1021/jacs.1c08033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Light-induced heat is largely neglected in traditional photocatalytic systems, especially for the thermodynamically and kinetically challenging CO2 reduction to C2 fuels. Herein, we first design asymmetric Metal1-O-Metal2 triple-atom sites confined in phenakite to facilitate C-C coupling and employ photoinduced heat to increase molecular thermal vibration and accelerate CO2 reduction to C2 fuels. Using O-vacancy-rich Zn2GeO4 nanobelts as prototypes, quasi in situ Raman spectra disclose the Zn-O-Ge triatomic sites are likely the reactive sites. Density functional theory calculations reveal that the asymmetric Zn-O-Ge sites could promote C-C coupling through inducing distinct charge distributions of neighboring C1 intermediates, whereas the created O vacancies could lower the energy barrier of the rate-determining hydrogenation step from 1.46 to 0.67 eV. Catalytic performances under different testing conditions demonstrate that light initiates the CO2 reduction reaction. In situ Fourier-transform infrared spectra and D2O kinetic isotopic effect experiments disclose that light-induced heat kinetically triggers C-C coupling and accelerates OCCO* hydrogenation via providing abundant hydrogen species. Consequently, in a simulated air atmosphere under 0.1 W/cm2 illumination at 348 K, the O-vacancy-rich Zn2GeO4 nanobelts demonstrate an acetate output of 12.7 μmol g-1 h-1, a high acetate selectivity of 66.9%, a considerable CO2-to-CH3COOH conversion ratio of 29.95%, and a stability of up to 220 h.
Collapse
Affiliation(s)
- Juncheng Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xingchen Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
16
|
Liu K, Chen D, Zhang S, Su P, Huang Y. Enhancing the Charge Carrier Transfer of ZnFe 2O 4/C/TiO 2 Hollow Nanosphere Photocatalyst via Contact Interface Engineering. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuiliang Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Daoming Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siqi Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|