1
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
2
|
Sun Q, Zhu Y, Zhong X, Wang Y, Jiang M, Jia Z, Yao J. Dual Heterojunction of Etched MIL-68(In)-NH 2 Supported Heptazine-/Triazine-Based Carbon Nitride for Improved Visible-Light Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305481. [PMID: 37658518 DOI: 10.1002/smll.202305481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Indexed: 09/03/2023]
Abstract
This work reports a dual heterojunction of etched MIL-68(In)-NH2 (MN) supported heptazine-/triazine-based carbon nitride (HTCN) via a facile hydrothermal process for photocatalytic ammonia (NH3 ) synthesis. By applying the hydrothermal treatment, MN microrods are chemically etched into hollow microtubes, and HTCN with nanorod array structures are simultaneously tightly anchored on the outside surface of the microtubes. With the addition of 9 wt% HTCN, the resulting dual heterojunction presents an enhanced photocatalytic ammonia yield rate of 5.57 mm gcat -1 h-1 with an apparent quantum efficiency of 10.89% at 420 nm. Moreover, stable ammonia generation using seawater, tap water, lake water, and turbid water in the absence of sacrificial reagents verifies the potential of the dual-heterojunction composites as a commercially viable photosystem. The obtained one-dimensional (1D) microtubes and coating of HTCN confers this unique composite with extended visible-light harvesting and accelerated charge carrier migration via a multi-stepwise charge transfer pathway. This work provides a new strategy for optimizing nitrogen (N2 )-into-ammonia conversion efficiency by designing novel dual-heterojunction catalysts.
Collapse
Affiliation(s)
- Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Ouyang YS, Jiang Y, Ni S, Jiang RY, Wang J, Wang WB, Zhang W, Yang QY. Efficient Visible-Light Photocatalytic Hydrogen Evolution over the In 2O 3@Ni 2P Heterojunction of an In-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366269 DOI: 10.1021/acsami.3c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Although the engineering of visible-light-driven photocatalysts with appropriate bandgap structures is beneficial for generating hydrogen (H2), the construction of heterojunctions and energy band matching are extremely challenging. In this study, In2O3@Ni2P (IO@NP) heterojunctions are attained by annealing MIL-68(In) and combining the resulting material with NP via a simple hydrothermal method. Visible-light photocatalysis experiments validate that the optimized IO@NP heterojunction exhibits a dramatically improved H2 release rate of 2485.5 μmol g-1 h-1 of 92.4 times higher than that of IO. Optical characterization reveals that the doping of IO with an NP component promotes the rapid separation of photo-induced carriers and enables the capture of visible light. Moreover, the interfacial effects of the IO@NP heterojunction and synergistic interaction between IO and NP that arises through their close contact mean that plentiful active centers are available to reactants. Notably, eosin Y (EY) acts as a sacrificial photosensitizer and has a significant effect on the rate of H2 generation under visible light irradiation, which is an aspect that needs further improvement. Overall, this study describes a feasible approach for synthesizing promising IO-based heterojunctions for use in practical photocatalysis.
Collapse
Affiliation(s)
- Yi-Shan Ouyang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Jiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Ni
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Run-Yuan Jiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Wen-Bin Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Wang S, He Z, Wu L, Wang D, Si R, Liu X, Liang R. Amino-functionalized MIL-125(Ti) for photodenitrification of pyridine in fuels via coordination activation by unsaturated Ti 4+ centers. Dalton Trans 2023; 52:3517-3525. [PMID: 36846981 DOI: 10.1039/d2dt03916h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Due to their explicit structure, metal-organic frameworks (MOFs) have been supposed to be credible platforms to research the micro-mechanism of heterogeneous photocatalysis. In this study, amino-functionalized MOFs (MIL-125(Ti)-NH2 (denoted as MTi), UiO-66(Zr)-NH2 (denoted as UZr) and MIL-68(In)-NH2 (denoted as MIn)) with three different metal centers were synthesized and applied for the denitrification of simulated fuels under visible light irradiation, during which pyridine was used as a typical nitrogen-containing compound. The results showed that MTi had the best activity among the above three MOFs, and the denitrogenation rate increased to 80% after 4 h of visible light irradiation. On the grounds of the theoretical calculation of pyridine adsorption and actual activity experiments, it can be presumed that the unsaturated Ti4+ metal centers should be the key active sites. Meanwhile, the XPS and in situ infrared results verified that the coordinatively unsaturated Ti4+ sites facilitate the activation of pyridine molecules through the surface -N⋯Ti- coordination species. The coordination-photocatalysis synergism promotes the efficiency of photocatalytic performance and the corresponding mechanism is proposed.
Collapse
Affiliation(s)
- Shihui Wang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China. .,Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China.,State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Zhoujun He
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China. .,Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Deling Wang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China. .,Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China.,State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Ruiru Si
- Fujian Key Laboratory of Agro-products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Xiyao Liu
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China
| | - Ruowen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China. .,Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China.,State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| |
Collapse
|
5
|
Zheng X, Song Y, Liu Y, Yang Y, Wu D, Yang Y, Feng S, Li J, Liu W, Shen Y, Tian X. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Zhou H, Guo Y, Yao J. Construction of a dual-signal molecularly imprinted photoelectrochemical sensor based on bias potential control for selective sensing of tetracycline. NEW J CHEM 2023. [DOI: 10.1039/d2nj06137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The two signals validate each other to improve the accuracy and sensitivity of the MIP-PEC sensor.
Collapse
Affiliation(s)
- Hongyan Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
| | - Yongjun Guo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- Sichuan Guangya Polymer Chemical Co., Ltd, Chengdu 610500, Sichuan Province, People's Republic of China
| | - Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, People's Republic of China
| |
Collapse
|
7
|
Liu T, Wang T, Ding C, Wang M, Wang W, Shen H, Zhang J. One-pot synthesis of carbon coated Cu-doped ZnIn2S4 core-shell structure for boosted photocatalytic H2-evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years. Catalysts 2022. [DOI: 10.3390/catal12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.
Collapse
|
9
|
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Behera P, Ray A, Prakash Tripathy S, Acharya L, Subudhi S, Parida K. ZIF-8 derived porous C, N co-doped ZnO modified B-g-C3N4: A Z-Scheme charge dynamics approach operative towards photocatalytic Hydrogen evolution and Ciprofloxacin degradation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
In-situ synthesis of nickel/palladium bimetal/ZnIn2S4 Schottky heterojunction for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 623:205-215. [DOI: 10.1016/j.jcis.2022.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022]
|
12
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Zhao L, Yang B, Zhuang G, Wen Y, Zhang T, Lin M, Zhuang Z, Yu Y. Thin In-Plane In 2 O 3 /ZnIn 2 S 4 Heterostructure Formed by Topological-Atom-Extraction: Optimal Distance and Charge Transfer for Effective CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201668. [PMID: 35833293 DOI: 10.1002/smll.202201668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Exploitation of atomic-level principles to optimize the charge transfer on ultrathin 2D heterostructures is an emerging frontier in relieving the energy and environmental crisis. Herein, a facile "topological-atom-extraction" protocol is disclosed, i.e., selective extraction of Zn from ultrathin half-unit-cell ZnIn2 S4 (HZIS) can embed thin In2 O3 domain into 1.60 nm thick HZIS layer to create an atomically thin in-plane In2 O3 /HZIS heterostructure. Thanks to the optimal distance and capability of charge separation, the in-plane In2 O3 /HZIS heterostructure is among the best ZnIn2 S4 -based CO2 reduction reaction (CRR) photocatalysts, and indeed demonstrates a significant increase (from 6.8- to 128-fold) in CO production rate compared with those of out-plane ZIS@In2 O3 and out-plane In2 O3 -HZIScalcined heterostructures. Density Functional Theory simulation reveals that whereas the out-plane heterostructure has a much smaller ∆q of 0.2-0.25 e, the in-plane heterostructure with "zero distance contact" has an optimal ∆q of 1.05 e between In2 O3 and HZIS that induces remarkable charge redistribution on the in-plane heterojunction interface and creates local electric field confined within the ultrathin layer. The charge redistribution efficiently directs the charge-carrier separation in S-scheme photocatalytic system and endows long-lifetime carrier to CRR active HZIS. The findings demonstrate the strong versatility of engineering atomic-level heterojunctions for efficient catalysts design.
Collapse
Affiliation(s)
- Lin Zhao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Guoxin Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yonglin Wen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Tingshi Zhang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Mingxiong Lin
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
14
|
Zhang T, Yang C, Li B, Zhang Y, Zhuang Z, Yu Y. Atomically dispersed and oxygen deficient CuO clusters as an extremely efficient heterogeneous catalyst. NANOSCALE 2022; 14:4957-4964. [PMID: 35188512 DOI: 10.1039/d1nr08011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Preparation of high-density and atomically-dispersed clusters is of great importance yet remains a formidable challenge, which precludes rational design of high-performance, ultrasmall heterogeneous catalysts for alleviating the energy and environmental crises. In this study, we demonstrated an appealing non-equilibrium growth model to give sub-2 nm CuO clusters not from the growth of nuclei but from the top-down growth of metastable bulk crystals. These CuO clusters have high density and intriguingly uniform orientation, and are atomically scattered on an inactive ultrathin AlOOH substrate, which has been driven by the lattice matching between the CuO clusters and the utlrathin AlOOH substrate. The catalytic activity of CuO clusters, with the hydrogenation of 4-nitrophenol as a model reaction, proved to be extremely efficient and showed a rate constant of 130.0 s-1 g-1, outperforming the commercial Pd/C catalysts and reported state-of-the-art noble-metal catalysts (1.89-117.2 s-1 g-1). These clusters have abundant interfacial oxygen vacancies (OVs) whose concentration can be regulated, and the OVs are found to be essential, according to density functional theory (DFT) calculations, in reducing the energy barrier of catalytic reduction and significantly boosting the catalytic reaction. These findings could add to the library of crystals downsized to the atomic level and demonstrate how engineering point defects on the sub-nanometer materials help design high-efficient catalysts.
Collapse
Affiliation(s)
- Tingshi Zhang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| | - Chengkai Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| | - Borong Li
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Zhang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China.
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
15
|
|
16
|
Yang R, Mei L, Fan Y, Zhang Q, Zhu R, Amal R, Yin Z, Zeng Z. ZnIn 2 S 4 -Based Photocatalysts for Energy and Environmental Applications. SMALL METHODS 2021; 5:e2100887. [PMID: 34927932 DOI: 10.1002/smtd.202100887] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 06/14/2023]
Abstract
As a fascinating visible-light-responsive photocatalyst, zinc indium sulfide (ZnIn2 S4 ) has attracted extensive interdisciplinary interest and is expected to become a new research hotspot in the near future, due to its nontoxicity, suitable band gap, high physicochemical stability and durability, ease of synthesis, and appealing catalytic activity. This review provides an overview on the recent advances in ZnIn2 S4 -based photocatalysts. First, the crystal structures and band structures of ZnIn2 S4 are briefly introduced. Then, various modulation strategies of ZnIn2 S4 are outlined for better photocatalytic performance, which includes morphology and structure engineering, vacancy engineering, doping engineering, hydrogenation engineering, and the construction of ZnIn2 S4 -based composites. Thereafter, the potential applications in the energy and environmental area of ZnIn2 S4 -based photocatalysts are summarized. Finally, some personal perspectives about the promises and prospects of this emerging material are provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Liang Mei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Rongshu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|