1
|
Xiong M, Yang T. Computational screening on azafullerene-supported bifunctional single-atom catalysts for oxygen evolution and reduction reactions. Phys Chem Chem Phys 2024; 26:29895-29903. [PMID: 39611560 DOI: 10.1039/d4cp03608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Developing efficient bifunctional catalysts toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains challenging. Herein, we systematically explored the catalytic activity of single-atom catalysts (SACs) for the OER and ORR with 27 transition metal atoms supported on pyrrolic/pyridinic azafullerenes C54N4 and C64N4 using first-principles calculations. The catalytic performance of these single-atom catalysts TM@azafullerenes is highly dependent on the number of electrons in the TM d-orbitals. Azafullerene-supported Rh, Ir, and Co catalysts show overpotentials comparable or even superior to those of TM-N4-graphene, emerging as promising candidates for bifunctional ORR and OER catalysts. Further bonding analysis shows that the TM-N bonds (TM = Rh, Co, and Ir) exhibit ionic characteristics, and ab initio molecular dynamics simulations (AIMD) demonstrate that these catalysts remain stable at 300 K. Descriptors, including the integrated crystal orbital Hamilton population and ϕ incorporating the d-orbital electron count and the electronegativity effectively elucidate the origins of the high catalytic activity for the ORR/OER. Our findings not only enrich the understanding of single-atom catalysts but also stimulate further development of novel fullerene-based SACs.
Collapse
Affiliation(s)
- Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
2
|
Cook EN, Flaxman LA, Reid AG, Dickie DA, Machan CW. Acid Strength Effects on Dimerization during Metal-Free Catalytic Dioxygen Reduction. J Am Chem Soc 2024; 146:24892-24900. [PMID: 39205655 PMCID: PMC11403605 DOI: 10.1021/jacs.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of earth-abundant catalysts for the reduction of dioxygen (ORR) is essential for the development of alternative industrial processes and energy sources. Here, we report a transition metal-free dicationic organocatalyst (Ph2Phen2+) for the ORR. The ORR performance of this compound was studied in acetonitrile solution under both electrochemical conditions and spectrochemical conditions, using halogenated acetic acid derivatives spanning a pKa range of 12.65 to 20.3. Interestingly, it was found that under electrochemical conditions, a kinetically relevant peroxo dimer species forms with all acids. However, under spectrochemical conditions, strong acids diminish the kinetic contribution of this dimer to the observed rate due to lower catalyst concentrations, whereas weaker acids were still rate-limited by the dimer equilibrium. Together, these results provide insight into the mechanisms of ORR by organic-based, metal-free catalysts, suggesting that balancing redox activity and unsaturated character of these molecules with respect to the pKa of intermediates can enable reaction tuning analogous to transition metal-based systems.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Luke A Flaxman
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Amelia G Reid
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
3
|
Du Y, Wang R, Huang T, Yang X, Yan S, Zou Z. Thermal Migration to Recover Spent Pt/C Catalyst. CHEMSUSCHEM 2024:e202400956. [PMID: 39103317 DOI: 10.1002/cssc.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Recovery of spent Pt/C catalyst is a sustainable low-cost route to promote large-scale application of hydrogen fuel cells. Here, we report a thermal migration strategy to recover the spent Pt/C. In this route, the ZIF-8 is used to produce nitrogen doped porous carbon (NC) with abundant pyrimidine nitrogen sites as the new support. Subsequently, the spent Pt/C, NC, and NH4Cl etching reagent are mixed and heated at 900 °C to thermally migrate Pt from Pt/C onto NC with the help of NH4Cl etching reagent. The thermal-volatilized Pt tends to be captured by the pyrimidine nitrogen sites of NC support, thus producing the Pt clusters or 4-5 nm Pt particles. The recovered Pt/NC catalyst exhibits the highly stable oxygen reduction activities with a mass activity of 0.6 A mgPt -1 after 30000-cycle accelerated durability test.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Tao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Xupin Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| |
Collapse
|
4
|
Cook EN, Davis AE, Hilinski MK, Machan CW. Metal-Free Homogeneous O 2 Reduction by an Iminium-Based Electrocatalyst. J Am Chem Soc 2024; 146:7931-7935. [PMID: 38488290 PMCID: PMC10979433 DOI: 10.1021/jacs.3c14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The oxygen reduction reaction (ORR) is important for alternative energy and industrial oxidation processes. Herein, an iminium-based organoelectrocatalyst (im+) for the ORR with trifluoroacetic acid as a proton source in acetonitrile solution under both electrochemical and spectrochemical conditions using decamethylferrocene as a chemical reductant is reported. Under spectrochemical conditions, H2O2 is the primary reaction product, while under electrochemical conditions H2O is produced. This difference in selectivity is attributed to the interception of the free superoxide intermediate under electrochemical conditions by the reduced catalyst, accessing an alternate inner-sphere pathway.
Collapse
Affiliation(s)
- Emma N. Cook
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| | - Anna E. Davis
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| | - Michael K. Hilinski
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| | - Charles W. Machan
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| |
Collapse
|
5
|
Cheng Z, Cheng W, Lin XN, Zhang RH, Yan LY, Tian GX, Shen XY, Zhou XW. Synthesis of MnOOH and its application in a supporting hexagonal Pd/C catalyst for the oxygen reduction reaction. NANOSCALE 2023; 16:373-383. [PMID: 38063775 DOI: 10.1039/d3nr04724e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
With the expansion of global energy problems and the deepening of research on oxygen reduction reaction (ORR) in alkaline media, the development of low cost and high electrocatalytic performance catalysts has become a research hotspot. In this study, a hexagonal Pd-C-MnOOH composite catalyst was prepared by using the triblock copolymer P123 as the reducing agent and protective agent, sucrose as the carbon source and self-made MnOOH as the carrier under hydrothermal conditions. When the Pd load is 20% and the C/MnOOH ratio is 1 : 1, the 20% Pd-C-MnOOH-1 : 1 catalyst obtained by the one-step method has the highest ORR activity and stability in the alkaline system. At 1600 rpm, the limiting diffusion current density and half-wave potential of the 20% Pd-C-MnOOH-1 : 1 electrocatalyst are -4.78 mA cm-2 and 0.84 V, respectively, which are better than those of the commercial 20%Pd/C catalyst. According to the Koutecky-Levich (K-L) equation and the linear fitting results, the electron transfer number of the 20%Pd-C-MnOOH-1 : 1 electrocatalyst for the oxygen reduction reaction is 3.8, which is similar to that of a 4-electron process. After 1000 cycles, the limiting diffusion current density of the 20%Pd-C-MnOOH-1 : 1 catalyst is -4.61 mA cm-2, which only decreases by 3.7%, indicating that the 20%Pd-C-MnOOH-1 : 1 catalyst has good stability. The reason for the improvement of the ORR performance of the Pd-C-MnOOH composite catalyst is the improvement of the conductivity of the carbon layer formed by original carbonization, the regular hexagonal highly active Pd particles and the synergistic catalytic effect between Pd and MnOOH. The method of introducing triblock copolymers in the synthesis of oxides and metal-oxide composite catalysts is expected to be extended to other electrocatalysis fields.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Wei Cheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xin-Ning Lin
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Rong-Hua Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Luo-Yi Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Gui-Xian Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xiao-Yu Shen
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| | - Xin-Wen Zhou
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
6
|
Zhao Q, Tan X, Liu T, Hou S, Ni W, Huang H, Zhang J, Yang Z, Li D, Hu H, Wu M. Engineering adjacent N, P and S active sites on hierarchical porous carbon nanoshells for superior oxygen reduction reaction and rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 633:1022-1032. [PMID: 36516678 DOI: 10.1016/j.jcis.2022.11.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Heteroatom-doped carbon materials have been regarded as sustainable alternatives to the noble-metal catalysts for oxygen reduction reaction (ORR), while the catalytic performances still remain unsatisfactory. Herein, we develop a metal-free adjacent N, P and S-codoped hierarchical porous carbon nanoshells (NPS-HPCNs) through a novel layer-by-layer template coating method. The NPS-HPCNs is rationally fabricated by crosslinking of polyethyenemine (PEI) and phytic acid (PA) on nano-SiO2 template surface and subsequently coating of viscous sulfur-bearing petroleum pitch, followed by pyrolysis and alkaline etching. Soft X-ray absorption near-edge spectroscopy (XANES) analysis and density functional theory (DFT) calculations prove the engineering of adjacent N, P and S atoms to generate synergistic and reinforced active sites for oxygen electrocatalysis. The NPS-HPCNs manifests excellent ORR activity with a half-wave potential (E1/2) of 0.86 V, as well as promoted durability and methanol tolerance in alkaline medium. Remarkably, the NPS-HPCNs-based Zn-air battery delivers an open-circuit voltage of 1.479 V, a considerable peak power density of 206 mW cm-2 and robust cycling stability (over 200 h), even exceeding the commercial Pt/C catalyst. This study offers fundamental insights into the construction and synergistic mechanism of adjacent heteroatoms on carbon substrate, providing advanced metal-free electrocatalysts for Zn-air batteries and other energy conversion and storage devices.
Collapse
Affiliation(s)
- Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojie Tan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tengfei Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuai Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanxin Ni
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhongxue Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Dawei Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
7
|
Ehlert C, Piras A, Schleicher J, Gryn'ova G. Metal-Free Molecular Catalysts for the Oxygen Reduction Reaction: Electron Affinity as an Activity Descriptor. J Phys Chem Lett 2023; 14:476-480. [PMID: 36625580 DOI: 10.1021/acs.jpclett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heteroatom-doped polyaromatic hydrocarbons (or nanographenes) are promising molecular electrocatalysts for the oxygen reduction reaction (ORR). Here, we use density functional theory to investigate the first step of the ORR pathway (chemisorption) for a set of molecules with experimentally determined catalytic activities. Weak chemisorption is found for only negatively charged catalysts, and a strong correlation is observed between the computed electron affinities and experimental catalytic activities for a range of B- and B,N-doped polyaromatic hydrocarbons. The electron affinity is put forward as a simple activity descriptor of charged (activated) catalysts on an electrode.
Collapse
Affiliation(s)
- Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Anna Piras
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Juliette Schleicher
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Sun Y, Kumar V, Kim KH. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Guo P, Xia Y, Liu B, Ma M, Shen L, Dai Y, Zhang Z, Zhao Z, Zhang Y, Zhao L, Wang Z. Low-Loading Sub-3 nm PtCo Nanoparticles Supported on Co-N-C with Dual Effect for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53819-53827. [PMID: 36414243 DOI: 10.1021/acsami.2c15996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing low-loading Pt-based catalysts possessing glorious catalytic performance can accelerate oxygen reduction reaction (ORR) and hence significantly advance the commercialization of proton exchange membrane fuel cells. In this report, we propose a hybrid catalyst that consists of low-loading sub-3 nm PtCo intermetallic nanoparticles carried on Co-N-C (PtCo/Co-N-C) via the microwave-assisted polyol procedure and subsequent heat treatment. Atomically dispersed Co atoms embedded in the Co-N-C carriers diffuse into the lattice of Pt, thus forming ultrasmall PtCo intermetallic nanoparticles. Owing to the dual effect of the enhanced metal-support interaction and alloy effect, as-fabricated PtCo/Co-N-C catalysts deliver an extraordinary performance, achieving a half-wave potential of 0.921 V, a mass activity of 0.700 A mgPt-1@0.9 V, and brilliant durability in the acidic medium. The fuel cell employing PtCo/Co-N-C as the cathode catalyst with an ultralow Pt loading of 0.05 mg cm-2 exhibits an impressive peak power density of 0.700 W cm-2, higher than that of commercial Pt/C under the same condition. Furthermore, the enhanced intrinsic ORR activity and stability are imputed to the downshifted d-band center and the strengthened metal-support interaction, as revealed by density functional theory calculations. This report affords a facile tactic to fabricate Pt-based alloy composite catalysts, which is also applicable to other alloy catalysts.
Collapse
Affiliation(s)
- Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yunfei Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Miao Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lixiao Shen
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunkun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ziyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zigang Zhao
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yunlong Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhenbo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
10
|
Liu LL, Ma MX, Xu H, Yang XY, Lu XY, Yang P, Wang H. S-doped M-N-C catalysts for the oxygen reduction reaction: Synthetic strategies, characterization, and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Jian J, Nie P, Wang Z, Qiao Y, Wang H, Zhang C, Xue X, Fang L, Chang L. V 5+-Doped Potassium Ferrite as an Efficient Trifunctional Catalyst for Large-Current-Density Water Splitting and Long-Life Rechargeable Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36721-36730. [PMID: 35939293 DOI: 10.1021/acsami.2c09725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing non-noble metal catalyst with super trifunctional activities for efficient overall water splitting (OWS) and rechargeable Zn-air battery (ZAB) is urgently needed. However, catalysts with excellent oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) performances are relatively few. Although metal-ionic-conductor K2Fe4O7 (KFO) can output large current densities for OER/HER even in 10.0 M KOH electrolyte, its water-splitting property still needs to be further improved. Herein, we introduced V5+ directly into KFO and synthesized the binder-free nickel foam (NF) basal V-KFO nanoparticles (labeled as V-KFO/NF). Both the theoretical analysis and actual experimental data certify that V5+ doping enhances the instinct water-splitting property of V-KFO/NF. Additionally, V-KFO/NF can directly serve as the air cathode of liquid/flexible ZABs. The assembled liquid ZAB can continue the charge-discharge cycling testing with a lower voltage gap (0.834 V) and a longer operation life (>550 h) at 10 mA cm-2. Meanwhile, the assembled flexible ZAB can drive the two-electrode water-splitting unit of V-KFO/NF and needs only 1.54 V to achieve the current density of 10 mA cm-2, which is much lower than that of KFO/NF (1.59 V). This work not only provides a novel and efficient trifunctional catalyst for a self-powered water-splitting device but also is the foundation support for other heteroatom-doped low-cost materials.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Chenyang Zhang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, P. R. China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Luan Fang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
12
|
Yin YC, Deng RX, Yang DR, Sun YB, Li ZQ, Xia XH. Synthesis of Pure Thiophene-Sulfur-Doped Graphene for an Oxygen Reduction Reaction with High Performance. J Phys Chem Lett 2022; 13:4350-4356. [PMID: 35543408 DOI: 10.1021/acs.jpclett.2c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various S-bonding configurations existing in sulfur-doped reduced graphene oxide (S-rGO) show different electronic structures and physiochemical properties. Thus, understanding the properties of unique S-bonding configurations requires the construction of S-rGO with only single configuration. Here, we synthesized S-rGO with a pure thiophene-sulfur configuration through a simple and low-cost hydrothermal method by simply controlling the oxidation degree of the graphene oxide (GO) precursor. Through the use of a GO precursor with a high content of C-O groups, pure doping of the thiophene-sulfur configuration in the rGO can be achieved. Further electrochemical characterization reveals an increased electrocatalytic activity of the pure thiophene-sulfur-doped S-rGO in the oxygen reduction reaction, indicating the important role of thiophene-sulfur. The present work deepens the understanding of the functions of doped nonmetal elements in carbon materials in electrocatalysis and helps in the design of high performance electrocatalysts.
Collapse
Affiliation(s)
- Yun-Chao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruo-Xi Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong-Rui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Bai Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Sheng J, Li Y. Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20455-20462. [PMID: 34346228 DOI: 10.1021/acsami.1c08104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen electrocatalytic reactions are essential for fuel cells and metal-air batteries. With their unique structure and properties, carbon nanotubes (CNTs) have found important applications in both oxygen reduction and evolution reactions. Herein, this perspective discusses the advantages and the recent progress of using CNTs as metal-free catalysts, catalyst supports, and free-standing electrodes in electrocatalysts. The future research directions and challenges toward the practical applications of CNT-based catalysts are highlighted.
Collapse
Affiliation(s)
- Jian Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Liu W, Li X, Wang M, Liu L. Research trend and dynamical development of focusing on the global critical metals: a bibliometric analysis during 1991-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26688-26705. [PMID: 34855179 DOI: 10.1007/s11356-021-17816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Critical metals are indispensable to a world seeking to transition away from carbon. Yet their extraction, processing, and application leave an unsustainable global environment and climate change footprint. To capture the development dynamics and research emphases of critical metals throughout their life cycle, this paper adopts bibliometrics to analyze the various stages of global critical metal flow in multiple dimensions to reveal the hot issues and future strategic trends. The research results indicate that the number of research papers on critical metals is annually rising, with remarkably rapid growth after 2010. Judging from the number of articles published by the authors and the citations, among the authors, Kawakita, Poettgen, Anwander, Inoue, and Dongmei Cui have a significant influence on critical metal research fields. The institutions with the most research on critical metals are universities, not research institutes. In addition, the focus has extended from a single discipline to the interdisciplinary development of multiple disciplines. Analysis of keywords shows that "rare metals" and "precious metals" are the most popular metals among the researched metals. The researched buzzwords of critical metals are disappearing, convergent, and merging over time. The research has focused on the mining and the whole life cycle process of extraction, treatment, and application. Based on the above characteristics, this paper tries to understand the dynamic development and evolution of global critical metals from multiple dimensions, resorting to giving a reference for follow-up-related research scholars.
Collapse
Affiliation(s)
- Wei Liu
- College of Management Science, Chengdu University of Technology, Chengdu, 610059, China
| | - Xin Li
- College of Management Science, Chengdu University of Technology, Chengdu, 610059, China.
| | - Minxi Wang
- College of Management Science, Chengdu University of Technology, Chengdu, 610059, China
| | - Litao Liu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
| |
Collapse
|
15
|
Li K, Wang C, Li H, Wen Y, Wang F, Xue Q, Huang Z, Fu C. Heterostructural Interface in Fe 3C-TiN Quantum Dots Boosts Oxygen Reduction Reaction for Al-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47440-47448. [PMID: 34591442 DOI: 10.1021/acsami.1c10192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen reduction electrocatalysts play important roles in metal-air batteries. Herein, Fe3C-TiN heterostructural quantum dots loaded on carbon nanotubes (FCTN@CNTs) are prepared as electrocatalysts for the oxygen reduction reaction (ORR) through a one-pot pyrolysis. The Fe3C-TiN quantum dots with a diameter of 2-5 nm show the unique characteristic of heterostructural interface. The as-prepared FCTN@CNTs display Pt/C comparable ORR performance (Eonset 1.06 and E1/2 0.95 V) in alkaline medium, which is ascribed to the heterostructural interface between TiN and Fe3C. Furthermore, the Al-air batteries with the FCTN@CNT catalyst display superior discharge performance, demonstrating good feasibility for practical application. This work provides an effective new method to synthesize affordable and efficient oxygen reduction reaction catalysts.
Collapse
Affiliation(s)
- Kaiqi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuqing Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huanxin Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yongliang Wen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fei Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyue Xue
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Werner D, Alexander T, Winkler D, Apaydin DH, Loerting T, Portenkirchner E. Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbon‐Based Electrodes with Potential Application for Organic Na‐Ion Batteries. Isr J Chem 2021. [DOI: 10.1002/ijch.202100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Werner
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Thöny Alexander
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Daniel Winkler
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | | | - Thomas Loerting
- Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | | |
Collapse
|
17
|
Hao J, Wang Y, Qiu X, Liu M, Li W, Li J. Dual Inorganic Sacrificial Template Synthesis of Hierarchically Porous Carbon with Specific N Sites for Efficient Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28140-28149. [PMID: 34111922 DOI: 10.1021/acsami.1c04942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is still a challenge to achieve efficiently controlled preparation of functional oxygen reduction reaction (ORR) carbon electrocatalysts with multi-preferred structures (hierarchically porous networks and specific carbon-nitrogen bonds) from carbohydrate-containing small molecules via simple one-step pyrolysis. Based on the step-by-step spontaneous gas-foaming strategy, we successfully prepare 3D hierarchically porous networks with tunable N sites (NP/NG ≈ 1:1) by pyrolyzing diverse carbohydrates (glucose, maltose, and cyclodextrin) using nonmetal-metal dual inorganic sacrificial templates. In situ evaporation templates can simplify the procedure of the experiments and avoid the active site loss compared with traditional hard templates. Crucially, dual inorganic sacrificial templates can induce abundant defects and microscopic pore structures (the specific surface area increased from 922.403 to 1898.792 m2·g-1) and tunable N sites compared with single nonmetal sacrificial templates. The regulatory mechanism of dual inorganic templates on N sites (NP/NG ≈ 1:1) is independent of the polymeric state of carbohydrate precursors or even the carbonization condition of the pyrolysis process. A series of carbon materials prepared by this strategy all have ORR-preferred structures and exhibit low ORR overpotentials compared with Pt/C. For instance, the Zn-air battery with βCD-DSC-950-1 exhibits an open-circuit potential of 1.51 V and a peak power density of 180.89 mW·cm-2, higher than those of Pt/C (1.47 V, 174.94 mW·cm-2). In general, the conversion of carbohydrate-containing small molecules to functional carbon materials provides a new strategy for the development of carbonaceous electrocatalysts.
Collapse
Affiliation(s)
- Jiayu Hao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yanqiu Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, Hunan, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|