1
|
Pan G, Hu Y, Wang Z, Li H, Wu D, Zhang L, Zhang J. A New High-Performance Porous Carbon-Coated Mn 3O 4/Na 2CO 3 Cathode for Suppressing Mn 2+Dissolution in Aqueous Zinc Ion Batteries. Chem Asian J 2024; 19:e202400290. [PMID: 39083303 DOI: 10.1002/asia.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Indexed: 10/04/2024]
Abstract
Manganous-manganic oxide (Mn3O4), akin to other manganese-based oxides, faces several critical challenges such as substantial capacity fading and limited rate performance due to its inferior electrical conductivity, in addition to the inevitable dissociation of Mn2+. To address these issues, we introduce for the first time a novel carbon-coated Mn3O4/Na2CO3 (Mn3O4/Na2CO3/C) composite material. Comprehensive characterizations indicate that Na2CO3 effectively curtails Mn2+dissolution, enhances carbon encapsulation throughout charging/discharging cycles, and exposes additional active sites on the Mn3O4/Na2CO3/C composite. Electrochemical assessments confirm that the Mn3O4/Na2CO3/C-2 cathode exhibits exceptional electrochemical performance, outperforming other cathodes in the ZnSO4 system. Moreover, the Mn3O4/Na2CO3/C-2 cathode delivers a high specific capacity of ~550 mAh gM-1 at 0.1 A g-1 and maintains a significant capacity of ~230 mAh g-1 after 360 cycles at 1.0 A g-1 within the 2.0 M ZnSO4+0.2 M MnSO4 electrolyte system, demonstrating its potential as a high-performance cathode material for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Zhenyuan Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hao Li
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ling Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
2
|
Ge H, Qin L, Zhang B, Jiang L, Tang Y, Lu B, Tian S, Zhou J. An ionically cross-linked composite hydrogel electrolyte based on natural biomacromolecules for sustainable zinc-ion batteries. NANOSCALE HORIZONS 2024; 9:1514-1521. [PMID: 38952214 DOI: 10.1039/d4nh00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Zinc-ion batteries (ZIBs) are regarded as promising power sources for flexible and biocompatible devices due to their good sustainability and high intrinsic safety. However, their applications have been hindered by the issues of uncontrolled Zn dendrite growth and severe water-induced side reactions in conventional liquid electrolytes. Herein, an ionically cross-linked composite hydrogel electrolyte based on natural biomacromolecules, including iota-carrageenan and sodium alginate, is designed to promote highly efficient and reversible Zn plating/stripping. The abundant functional groups of macromolecules effectively suppress the reactivity of water molecules and facilitate uniform Zn deposition. Moreover, the composite hydrogel electrolyte exhibits a high ionic conductivity of 5.89 × 10-2 S cm-1 and a Zn2+ transference number of 0.58. Consequently, the Zn‖Zn symmetric cell with the composite hydrogel electrolyte shows a stable cycle life of more than 500 h. Meanwhile, the Zn‖NH4V4O10 coin cell with the composite hydrogel electrolyte retains a high specific capacity of approximately 200 mA h g-1 after 600 cycles at 2 A g-1. The Zn‖NVO pouch cell based on the composite hydrogel electrolyte also shows a high specific capacity of 246.1 mA h g-1 at 0.5 A g-1 and retains 70.7% of its initial capacity after 150 cycles. The pouch cell performs well at different bending angles and exhibits a capacity retention rate of 98% after returning to its initial state from 180° folding. This work aims to construct high-performance hydrogel electrolytes using low-cost natural materials, which may provide a solution for the application of ZIBs in flexible biocompatible devices.
Collapse
Affiliation(s)
- Haoyang Ge
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| | - Liping Qin
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
| | - Bingyao Zhang
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| | - Long Jiang
- State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an 710077, China
| | - Yan Tang
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Siyu Tian
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
4
|
Zhanadilov O, Kim HJ, Lai HJ, Jiang JC, Konarov A, Mentbayeva A, Bakenov Z, Sohn KS, Kaghazchi P, Myung ST. Exploiting High-Voltage Stability of Dual-Ion Aqueous Electrolyte Reinforced by Incorporation of Fiberglass into Zwitterionic Hydrogel Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302973. [PMID: 37377256 DOI: 10.1002/smll.202302973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm-1 , electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6 Fe0.4 PO4 pouch cell delivers a reversible capacity of 130 mAh g-1 in the range of 1.0-2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g-1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.
Collapse
Affiliation(s)
- Orynbay Zhanadilov
- Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006, South Korea
| | - Hee Jae Kim
- Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006, South Korea
| | - Hou-Jen Lai
- Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Jyh-Chiang Jiang
- Computational and Theoretical Chemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Aishuak Konarov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - Zhumabay Bakenov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, 010000, Kazakhstan
| | - Kee-Sun Sohn
- Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006, South Korea
| | - Payam Kaghazchi
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425, Jülich, Germany
| | - Seung-Taek Myung
- Hybrid Materials Research Center, Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
5
|
Dong H, Hu X, Liu R, Ouyang M, He H, Wang T, Gao X, Dai Y, Zhang W, Liu Y, Zhou Y, Brett DJL, Parkin IP, Shearing PR, He G. Bio-Inspired Polyanionic Electrolytes for Highly Stable Zinc-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202311268. [PMID: 37615518 PMCID: PMC10962557 DOI: 10.1002/anie.202311268] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).
Collapse
Affiliation(s)
- Haobo Dong
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Xueying Hu
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Ruirui Liu
- Key Laboratory of Comprehensive and Highly Efficient UtilLaboratory of Salt Lake Resources Chemistry of Qinghai ProvinceChinese Academy of SciencesXiningQinghai810008China
| | - Mengzheng Ouyang
- Department of Earth Science and EngineeringImperial CollegeLondonSW7 2AZUK
| | - Hongzhen He
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tianlei Wang
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Xuan Gao
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yuhang Dai
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Wei Zhang
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yiyang Liu
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient UtilLaboratory of Salt Lake Resources Chemistry of Qinghai ProvinceChinese Academy of SciencesXiningQinghai810008China
| | - Dan J. L. Brett
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ivan P. Parkin
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Paul R. Shearing
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Guanjie He
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
6
|
Li Y, Yuan J, Qiao Y, Xu H, Zhang Z, Zhang W, He G, Chen H. Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Trans 2023; 52:11780-11796. [PMID: 37593775 DOI: 10.1039/d3dt01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Zinc-ion batteries are one of the promising energy storage devices, which have the advantages of environmental friendliness, high safety and low price and are expected to be used in large-scale battery application fields. However, four prominent water-induced adverse reactions, including zinc dendrite formation, zinc corrosion, passivation and the hydrogen evolution reaction in aqueous systems, seriously shorten the cycling life of zinc-ion batteries and greatly hinder their development. Based on this, polymer gel electrolytes have been developed to alleviate these issues due to their unique network structure, which can reduce water activity and suppress water-induced side reactions. Based on the challenges of polymer gel electrolytes, this review systematically summarizes the latest research progress in the use of additives in them and explores new perspectives in response to the existing problems with polymer electrolytes. In order to expand the performance of polymer gel electrolytes in zinc-ion batteries, a range of different types of additives are added via physical/chemical crosslinking, such as organic or inorganic substances, natural plants, etc. In addition, different types of additives and polymerization crosslinking from different angles essentially improve the ionic conductivity of the gel electrolyte, inhibit the growth of zinc dendrites, and reduce hydrogen evolution and oxygen-absorbed corrosion. After these modifications of polymer gel electrolytes, a more stable and superior electrochemical performance of zinc-ion batteries can be obtained, which provides some strategies for solid-state zinc-ion batteries.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Qiao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhihao Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Wenyao Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
7
|
Cao Y, Zhang G, Zou J, Dai H, Wang C. Natural Pyranosyl Materials: Potential Applications in Solid-State Batteries. CHEMSUSCHEM 2023; 16:e202202216. [PMID: 36797983 DOI: 10.1002/cssc.202202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Solid-state batteries have become one of the hottest research areas today, due to the use of solid-state electrolytes enabling the high safety and energy density. Because of the interaction with electrolyte salts and the abundant ion transport sites, natural polysaccharide polymers with rich functional groups such as -OH, -OR or -COO- etc. have been applied in solid-state electrolytes and have the merits of possibly high ionic conductivity and sustainability. This review summarizes the recent progress of natural polysaccharides and derivatives for polymer electrolytes, which will stimulate further interest in the application of polysaccharides for solid-state batteries.
Collapse
Affiliation(s)
- Yueyue Cao
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jincheng Zou
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huichao Dai
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
8
|
Zhang Y, Xu M, Jia X, Liu F, Yao J, Hu R, Jiang X, Yu P, Yang H. Application of Biomass Materials in Zinc-Ion Batteries. Molecules 2023; 28:molecules28062436. [PMID: 36985411 PMCID: PMC10054390 DOI: 10.3390/molecules28062436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Currently, aqueous zinc-ion batteries, with large reserves of zinc metal and maturity of production, are a promising alternative to sustainable energy storage. Nevertheless, aqueous solution has poor frost resistance and is prone to side reactions. In addition, zinc dendrites also limit the performance of zinc-ion batteries. Biomass, with complex molecular structure and abundant functional groups, makes it have great application prospects. In this review, the research progress of biomass and its derived materials used in zinc-ion batteries are reviewed. The different regulation strategies and characteristics of biomass used in zinc-ion battery electrodes, electrolyte separators and binders are demonstrated. The regulation mechanism is analyzed. At the end, the development prospect and challenges of biomass in energy materials application are proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Mengdie Xu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xin Jia
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fangjun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xianyang 441053, China
- Correspondence: (R.H.); (X.J.); (P.Y.); (H.Y.)
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430205, China
- Correspondence: (R.H.); (X.J.); (P.Y.); (H.Y.)
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (R.H.); (X.J.); (P.Y.); (H.Y.)
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (R.H.); (X.J.); (P.Y.); (H.Y.)
| |
Collapse
|
9
|
Liu X, Li X, Yang X, Lu J, Zhang X, Yuan D, Zhang Y. Influence of Water on Gel Electrolytes for Zinc-Ion Batteries. Chem Asian J 2023; 18:e202201280. [PMID: 36632721 DOI: 10.1002/asia.202201280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Gel electrolytes are being intensively explored for aqueous rechargeable zinc-ion batteries, especially towards high performance and multi-functionalities. Water plays a central role on the fundamental properties, interface reaction/interaction, and performance of the gel-type zinc electrolyte. In this review, the influence of water on the physiochemical properties of gel electrolytes is focused on. The correlation between water activity and the fundamental properties of zinc electrolytes is presented. Current approaches and challenges in manipulating water activity and the consequent influence on the electrochemical stability, transport, and interface kinetics of gel electrolytes are summarized. An outlook on approaches to tuning and investigating water activity is provided to shed light on the design of advanced gel electrolytes.
Collapse
Affiliation(s)
- Xiangjie Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xin Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xiaotong Yang
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Jingqi Lu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Yizhou Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
10
|
Wei W, Nan S, Wang H, Xu S, Liu X, He R. Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Dong H, Liu R, Hu X, Zhao F, Kang L, Liu L, Li J, Tan Y, Zhou Y, Brett DJ, He G, Parkin IP. Cathode-Electrolyte Interface Modification by Binder Engineering for High-Performance Aqueous Zinc-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205084. [PMID: 36526590 PMCID: PMC9929112 DOI: 10.1002/advs.202205084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
A stable cathode-electrolyte interface (CEI) is crucial for aqueous zinc-ion batteries (AZIBs), but it is less investigated. Commercial binder poly(vinylidene fluoride) (PVDF) is widely used without scrutinizing its suitability and cathode-electrolyte interface (CEI) in AZIBs. A water-soluble binder is developed that facilitated the in situ formation of a CEI protecting layer tuning the interfacial morphology. By combining a polysaccharide sodium alginate (SA) with a hydrophobic polytetrafluoroethylene (PTFE), the surface morphology, and charge storage kinetics can be confined from diffusion-dominated to capacitance-controlled processes. The underpinning mechanism investigates experimentally in both kinetic and thermodynamic perspectives demonstrate that the COO- from SA acts as an anionic polyelectrolyte facilitating the adsorption of Zn2+ ; meanwhile fluoride atoms on PTFE backbone provide hydrophobicity to break desolvation penalty. The hybrid binder is beneficial in providing a higher areal flux of Zn2+ at the CEI, where the Zn-Birnessite MnO2 battery with the hybrid binder exhibits an average specific capacity 45.6% higher than that with conventional PVDF binders; moreover, a reduced interface activation energy attained fosters a superior rate capability and a capacity retention of 99.1% in 1000 cycles. The hybrid binder also reduces the cost compared to the PVDF/NMP, which is a universal strategy to modify interface morphology.
Collapse
Affiliation(s)
- Haobo Dong
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College London20 Gordon StreetLondonWC1E 7JEUK
| | - Ruirui Liu
- Key Laboratory of Comprehensive and Highly Efficient UtilLaboratory of Salt Lake Resources Chemistry of Qinghai ProvinceChinese Academy of SciencesXiningQinghai810008China
| | - Xueying Hu
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Fangjia Zhao
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Liqun Kang
- Materials and Catalysis LaboratoryDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Longxiang Liu
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Jianwei Li
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yeshu Tan
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient UtilLaboratory of Salt Lake Resources Chemistry of Qinghai ProvinceChinese Academy of SciencesXiningQinghai810008China
| | - Dan J.L. Brett
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College London20 Gordon StreetLondonWC1E 7JEUK
| | - Guanjie He
- Electrochemical Innovation LabDepartment of Chemical EngineeringUniversity College London20 Gordon StreetLondonWC1E 7JEUK
| | - Ivan P. Parkin
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
12
|
Hou Y, Kong F, Wang Z, Ren M, Qiao C, Liu W, Yao J, Zhang C, Zhao H. High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J Colloid Interface Sci 2023; 629:279-287. [PMID: 36155923 DOI: 10.1016/j.jcis.2022.09.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
With the increasing requirement for high capacity energy storage systems, a large amount of recent work has focused on the development of zinc-iodine batteries (ZIBs) on account of high energy density, fast redox kinetics, and excellent reversibility. Nevertheless, low electron conductivity, the shuttle effect, and highly soluble iodine species (I2, I-, and I3-) have impeded their widespread application. In this study, metal organic framework-5 (MOF-5)-derived mesoporous carbon (MPC) loaded iodine (MPC/I2) cathode and the single-sided ketjen black modified cotton fiber (KB@CF) separator are designed to solve the problems mentioned above. That is, the double fixation strategy using MPC and KB@CF separators for iodine species suppresses the shuttle effect. Therefore, the ZIBs constructed with the MPC/I2 cathode and the KB@CF separator can exhibit excellent electrochemical performance. At the current density of 0.1 A g-1, a high discharge specific capacity of 137 mAh g-1 is still available after 300 cycles. Meanwhile, it exhibits a low capacity decay rate at long cycling (0.030% per cycle over 2000 cycles).
Collapse
Affiliation(s)
- Yangzheng Hou
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fangong Kong
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zirui Wang
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Manman Ren
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Weiliang Liu
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Jinshui Yao
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, PR China
| | - Hui Zhao
- School of Materials Science and Engineering, Energy Research Institute of Shandong Academy of Sciences, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Chemical Engineering, State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
13
|
Al-Amin M, Islam S, Shibly SUA, Iffat S. Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3997. [PMID: 36432283 PMCID: PMC9697041 DOI: 10.3390/nano12223997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries (LIBs) have been considered an easily accessible battery technology because of their low weight, cheapness, etc. Unfortunately, they have significant drawbacks, such as flammability and scarcity of lithium. Since the components of zinc-ion batteries are nonflammable, nontoxic, and cheap, AZIBs could be a suitable replacement for LIBs. In this article, the advantages and drawbacks of AZIBs over other energy storage devices are briefly discussed. This review focused on the cathode materials and electrolytes for AZIBs. In addition, we discussed the approaches to improve the electrochemical performance of zinc batteries. Here, we also discussed the polymer gel electrolytes and the electrodes for flexible zinc-ion batteries (FZIBs). Moreover, we have outlined the importance of temperature and additives in a flexible zinc-ion battery. Finally, we have discussed anode materials for both AZIBs and FZIBs. This review has summarized the advantages and disadvantages of AZIBs and FZIBs for future applications in commercial battery technology.
Collapse
Affiliation(s)
- Md. Al-Amin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Saiful Islam
- Natural Science (Chemistry), American International University Bangladesh, Dhaka 1229, Bangladesh
| | | | - Samia Iffat
- Telephone Shilpa Sangstha Ltd., Gazipur, Dhaka 1710, Bangladesh
| |
Collapse
|
14
|
Abstract
The growing trend of intelligent devices ranging from wearables and soft robots to artificial intelligence has set a high demand for smart batteries. Hydrogels provide opportunities for smart batteries to self-adjust their functions according to the operation conditions. Despite the progress in hydrogel-based smart batteries, a gap remains between the designable functions of diverse hydrogels and the expected performance of batteries. In this Perspective, we first briefly introduce the fundamentals of hydrogels, including formation, structure, and characteristics of the internal water and ions. Batteries that operate under unusual mechanical and temperature conditions enabled by hydrogels are highlighted. Challenges and opportunities for further development of hydrogels are outlined to propose future research in smart batteries toward all-climate power sources and intelligent wearables.
Collapse
Affiliation(s)
- Peihua Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| |
Collapse
|
15
|
Dong H, Hu X, He G. A shear-thickening colloidal electrolyte for aqueous zinc-ion batteries with resistance on impact. NANOSCALE 2022; 14:14544-14551. [PMID: 36173291 DOI: 10.1039/d2nr04140e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A conventional aqueous electrolyte is a crucial component of zinc-ion batteries providing an ion conductive medium. However, the monofunction of a liquid electrolyte cannot bear any external load. With regard to applications in electric vehicles and stationary energy storage devices, complicated battery packing materials are required to improve the mechanical properties, resulting in reduced energy or power densities from the perspective of the entire device. In this work, an electrolyte suspension combining both fluid-like and solid-like performances was developed for rechargeable zinc-ion batteries. Cornstarch water suspension is utilized in the electrolyte design forming a shear-thickening electrolyte with impact resistance ability. The formed electrolyte becomes rigid at a high shear rate. In other words, under a sudden impact, a battery with this shear-thickening electrolyte could offer additional load bearing avoiding short-circuiting and improving safety. Although an additional functionality, namely impact resistance, was added to the electrolyte, the as-prepared electrolyte still performs with comparable electrochemical performances for which it exhibits a superior ionic conductivity of 3.9 × 10-3 S cm-1 and Zn2+ transference number. This electrolyte even suppresses side-effects on the zinc anode, exhibiting a lower voltage gap in the symmetric cell compared to the aqueous electrolyte. The integrated full cell also delivered a specific capacity of 255 mA h g-1 with commercial MnO2 as the cathode at a current density of 0.1 A g-1.
Collapse
Affiliation(s)
- Haobo Dong
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Xueying Hu
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
16
|
Zheng T, Yang L, Li J, Cao M, Shu L, Yang L, Zhang XF, Yao J. Lignocellulose hydrogels fabricated from corncob residues through a green solvent system. Int J Biol Macromol 2022; 217:428-434. [PMID: 35843394 DOI: 10.1016/j.ijbiomac.2022.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
It is still a challenge to find an effective solvent system that can simultaneously dissolve the cellulose and lignin in biomass residues to fabricate lignocellulose hydrogels (LHs). Herein, corncob residues from furfural production were pretreated with alkaline peroxide to regulate the lignin content. The lignin/cellulose composites with various lignin content were then dissolved and regenerated by a green and facile ZnCl2/CaCl2 solvent system. The inorganic salt solvents were served as linkers and flexible LHs were obtained. Substrate material containing 10.75% lignin shows the best compressive stress (76.71 kPa). Inspired by its superior ionic conductivity, the hydrogels were assembled into a solid-state electrolyte for a zinc-ion hybrid supercapacitor. This research develops a feasible, simple, and low-cost route for lignin-containing hydrogel preparation and offers insights into the high-value application of agro-industrial lignocellulosic wastes.
Collapse
Affiliation(s)
- Tianran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingqiu Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjue Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lvye Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Liu ZF, Zhu CY, Ye YW, Zhang YH, Cheng F, Li HR. Synergistic Optimization Strategy Involving Sandwich-like MnO 2@rGO and Laponite-Modified PAM for High-Performance Zinc-Ion Batteries and Zinc Dendrite Suppression. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25962-25971. [PMID: 35635000 DOI: 10.1021/acsami.2c02334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optimization of the cathode structure and exploration of a novel electrolyte system are important approaches for achieving high-performance zinc-ion batteries (ZIBs) and zinc dendrite suppression. Herein, a quasi-solid-state ZIB combining a sandwich-like MnO2@rGO cathode, a laponite (Lap)-modified polyacrylamide (PAM) hydrogel electrolyte, and an electrodeposited zinc anode is designed and constructed by a synergistic optimization strategy. The MnO2 composite prepared through the intercalation of rGO shows developed mesopores, providing accessible ion transport channels and exhibiting a high electrical conductivity. Thanks to the high dispersion of Lap nanoplates in the hydrogel and good charge-averaging effect, the Zn//PAM-5%Lap//Zn symmetrical battery exhibits a consistent low-voltage polarization of less than 60 mV within 2000 h without a short-circuit phenomenon or any over-potential rise, indicating a stable zinc peeling/plating process. The optimized quasi-solid-state ZIB delivers a high reversible capacity of 291 mA h g-1 at a current density of 0.2 A g-1 due to the synergistic effect of each component of ZIB. Even at a high rate of 2 A g-1, it still maintains a high reversible capacity of 97 mA h g-1 after 2000 cycles, indicating its excellent electrochemical performance. Furthermore, the assembled flexible battery performs excellently in terms of damage and bending resistance.
Collapse
Affiliation(s)
- Ze-Fei Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Cheng-Yu Zhu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - You-Wen Ye
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yu-Han Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Fei Cheng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Huan-Rong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
18
|
Sun Q, Cheng H, Nie W, Lu X, Zhao H. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-ion Batteries. Chem Asian J 2022; 17:e202200067. [PMID: 35188329 DOI: 10.1002/asia.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Indexed: 11/11/2022]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) hold a budding technology for large-scale stationary energy storage devices due to their inherent safety, cost-effectiveness, eco-friendly, and acceptable electrochemical performance. However, developing a cathode material with fast kinetics and durable structural stability for Zn 2+ intercalation is still an arduous challenge. Compared with other cathode materials, layered manganese/vanadium (Mn/V) oxides that feature merits of adjustable interlayer spacing and considerable specific capacity have attracted much interest in AZIBs. However, the intrinsic sluggish reaction kinetics, inferior electrical conductivity, and notorious dissolution of active materials still obstruct the realization of their full potentials. Interlayer engineering of pre-intercalation is regarded as an effective solution to overcome these problems. In this review, we start from the crystal structure and reaction mechanism of layered Mn/V oxide cathodes to critical issues and recent progress in interlayer engineering. Finally, some future perspectives are outlined for the development of high-performance AZIBs.
Collapse
Affiliation(s)
- Qiangchao Sun
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongwei Cheng
- Shanghai University, School of Materials Science and Engineering, Room A526, Building 13, No. 333 Nanchen Road, 200444, Shanghai, CHINA
| | - Wei Nie
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Xionggang Lu
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongbin Zhao
- Shanghai University, College of Sciences & Institute for Sustainable Energy, CHINA
| |
Collapse
|
19
|
Zhang B, Qin L, Fang Y, Chai Y, Xie X, Lu B, Liang S, Zhou J. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci Bull (Beijing) 2022; 67:955-962. [DOI: 10.1016/j.scib.2022.01.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
|
20
|
Chen X, Huang R, Ding M, He H, Wang F, Yin S. Hexagonal WO 3/3D Porous Graphene as a Novel Zinc Intercalation Anode for Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3961-3969. [PMID: 35025198 DOI: 10.1021/acsami.1c18975] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aqueous Zn-ion batteries (ZIBs) have acquired great attention because of their high safety and environmentally friendly properties. However, the uncontrollable Zn dendrites and the irreversibility of electrodes seriously affect their practical application. Herein, hexagonal WO3/three-dimensional porous graphene (h-WO3/3DG) is investigated as an intercalation anode for ZIBs. As a result, the h-WO3/3DG//Zn half-battery shows excellent electrochemical performance with a high capacity of 115.6 mAh g-1 at 0.1 A g-1 and 89% capacity retention at 2.0 A g-1 after 10 000 cycles. The reason could be that the crystalline structure of WO3, which has hexagonal channels, with a diameter of 5.36 Å, much higher than the diameter of Zn2+ (0.73 Å), accelerating the insertion/extraction of Zn ions. A zinc metal-free full battery using h-WO3/3DG as the anode and ZnMn2O4/carbon black (ZnMn2O4/CB) as the cathode is constructed, exhibiting an initial capacity of 66.8 mAh g-1 at 0.1 A g-1 corresponding to an energy density of 73.5 W h kg-1 (based on the total mass of anode and cathode-active materials) and a capacity retention of 76.6% after 1000 cycles at 0.5 A g-1. This work demonstrates the high potential of hexagonal WO3 as an advanced intercalation anode material for Zn metal-free batteries and may inspire new ideas for the development of other intercalation anode hosts for ZIBs.
Collapse
Affiliation(s)
- Xingfa Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Renshu Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Mingyu Ding
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Huibing He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Fan Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
21
|
Wang G, Wang Y, Guan B, Liu J, Zhang Y, Shi X, Tang C, Li G, Li Y, Wang X, Li L. Hierarchical K-Birnessite-MnO 2 Carbon Framework for High-Energy-Density and Durable Aqueous Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104557. [PMID: 34643326 DOI: 10.1002/smll.202104557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
MnO2 -based material is one of the most promising cathode candidates of aqueous zinc-ion batteries (ZIBs), but its commercialization is hindered by the sluggish reaction kinetics and poor structural stability. Herein, a hierarchical framework consisting of core-shell structured carbon nanotubes@K-birnessite-MnO2 enwrapped by graphene/carbon black bicomponent networks (CNT@KMO@GC) via a simple method for ZIBs is designed and developed. The hierarchical framework characterized with favorable K+ preintercalation, δ-phase, and vertically aligned nanoflake arrays of KMO and 3D electrically conductive network shows the enhanced electronic/ionic conductivity and improved wettability with electrolyte, resulting in the fast charge/mass transport and stable structural stability of CNT@KMO@GC. When used as cathode in ZIBs, CNT@KMO@GC exhibits exciting electrochemical performance with remarkable capacity (405.5 mAh g-1 at 0.30 A g-1 ), high rate performance (166.6 mAh g-1 up to 10.0 A g-1 ), and impressive cycling stability (almost no capacity decay after 2000 cycles and 77.3% retention after 10 000 cycles at 10.0 A g-1 ). The energy storage mechanism of CNT@KMO@GC is clarified as H+ /Zn2+ coinsertion/extraction via electrochemical analysis and ex situ characterization. This study offers an innovative paradigm for the advance of ZIBs.
Collapse
Affiliation(s)
- Guolong Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yaling Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Boyuan Guan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Jiamei Liu
- Instrument Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaowei Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Cheng Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Guohong Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yingbo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiao Wang
- Department of New Energy Project, Northwest Engineering Corporation Limited, POWERCHINA, No. 18, Zhangba East Road, Xi'an, Shaanxi, 710065, P. R. China
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
22
|
Hoang Huy VP, Hieu LT, Hur J. Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2746. [PMID: 34685186 PMCID: PMC8541016 DOI: 10.3390/nano11102746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
Over the past few years, rechargeable aqueous Zn-ion batteries have garnered significant interest as potential alternatives for lithium-ion batteries because of their low cost, high theoretical capacity, low redox potential, and environmentally friendliness. However, several constraints associated with Zn metal anodes, such as the growth of Zn dendrites, occurrence of side reactions, and hydrogen evolution during repeated stripping/plating processes result in poor cycling life and low Coulombic efficiency, which severely impede further advancements in this technology. Despite recent efforts and impressive breakthroughs, the origin of these fundamental obstacles remains unclear and no successful strategy that can address these issues has been developed yet to realize the practical applications of rechargeable aqueous Zn-ion batteries. In this review, we have discussed various issues associated with the use of Zn metal anodes in mildly acidic aqueous electrolytes. Various strategies, including the shielding of the Zn surface, regulating the Zn deposition behavior, creating a uniform electric field, and controlling the surface energy of Zn metal anodes to repress the growth of Zn dendrites and the occurrence of side reactions, proposed to overcome the limitations of Zn metal anodes have also been discussed. Finally, the future perspectives of Zn anodes and possible design strategies for developing highly stable Zn anodes in mildly acidic aqueous environments have been discussed.
Collapse
Affiliation(s)
| | | | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Gyeonggi, Korea; (V.P.H.H.); (L.T.H.)
| |
Collapse
|
23
|
Liu B, Huang Y, Wang J, Li Z, Yang G, Jin S, Iranmanesh E, Hiralal P, Zhou H. Highly conductive locust bean gum bio-electrolyte for superior long-life quasi-solid-state zinc-ion batteries. RSC Adv 2021; 11:24862-24871. [PMID: 35481011 PMCID: PMC9036893 DOI: 10.1039/d1ra04294g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023] Open
Abstract
Rechargeable aqueous zinc-ion batteries (ZIBs) are promising wearable electronic power sources. However, solid-state electrolytes with high ionic conductivities and long-term stabilities are still challenging to fabricate for high-performance ZIBs. Herein, locust bean gum (LBG) was used as a natural bio-polymer to prepare a free-standing quasi-solid-state ZnSO4/MnSO4 electrolyte. The as-obtained LBG electrolyte showed high ionic conductivity reaching 33.57 mS cm-1 at room temperature. This value is so far the highest among the reported quasi-solid-state electrolytes. Besides, the as-obtained LBG electrolyte displayed excellent long-term stability toward a Zn anode. The application of the optimized LBG electrolyte in Zn-MnO2 batteries achieved a high specific capacity reaching up to 339.4 mA h g-1 at 0.15 A g-1, a superior rate performance of 143.3 mA h g-1 at 6 A g-1, an excellent capacity retention of 100% over 3300 cycles and 93% over 4000 cycles combined with a wide working temperature range (0-40 °C) and good mechanical flexibility (capacity retention of 80.74% after 1000 bending cycles at a bending angle of 90°). In sum, the proposed ZIBs-based LBG electrolyte with high electrochemical performance looks promising for the future development of bio-compatible and environmentally friendly solid-state energy storage devices.
Collapse
Affiliation(s)
- Binbin Liu
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| | - Yuan Huang
- School of Microelectronics Science and Technology, Sun Yat-Sen University Guangzhou PR China
| | - Jiawei Wang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| | - Zixuan Li
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| | - Guoshen Yang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| | - Shunyu Jin
- Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China Hefei 23000 PR China
| | - Emad Iranmanesh
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| | - Pritesh Hiralal
- Zinergy Shenzhen Ltd. Gangzhilong Science Park, Longhua Shenzhen 518109 PR China
| | - Hang Zhou
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China
| |
Collapse
|