1
|
Qiu J, Forbes T, Lin T. Tailoring the oxidation of benzyl alcohol and its derivatives with (photo)electrocatalysis. Chem Commun (Camb) 2025. [PMID: 39853742 DOI: 10.1039/d4cc04822a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H2) production and carbon dioxide (CO2) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms. This review article positions the electrochemical oxidation of benzyl alcohol as an alternative to the OER to produce H2, highlighting recent mechanistic studies involving noble and transition metal electrocatalysts. Furthermore, we discuss the electronic substituent effects on this reaction, which have been well-explored in organic oxidation pathways but remain underexplored in (photo)electrocatalytic contexts.
Collapse
Affiliation(s)
- Jingjing Qiu
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
| | - Tucker Forbes
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
| | - Timothy Lin
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
| |
Collapse
|
2
|
Zhang B, Chen J, Li Y, Zhu Y, Li S, Zhu F, Gao X, Liao S, Wang S, Xiao W, Shi S, Chen C. Engineering of Pore Design and Oxygen Vacancy on High-Entropy Oxides by a Microenvironment Tailoring Strategy. Inorg Chem 2024; 63:5689-5700. [PMID: 38485494 DOI: 10.1021/acs.inorgchem.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity and reduces the exposure of active sites (such as oxygen vacancies, OVs) in HEOs, leading to diminished catalytic efficiency. Herein, we fabricate a series of HEOs with a large surface area utilizing a microenvironment modulation strategy (m-NiMgCuZnCo: 86 m2/g, m-MnCuCoNiFe: 67 m2/g, and m-FeCrCoNiMn: 54 m2/g). The enhanced porosity in m-NiMgCuZnCo facilitates the presentation of numerous OVs, exhibiting an exceptional catalytic performance. This tactic creates inspiration for designing HEOs with rich porosity and active species with vast potential applications.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Fangyu Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiahong Gao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Sheng Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
3
|
Lau K, Giera B, Barcikowski S, Reichenberger S. The multivariate interaction between Au and TiO 2 colloids: the role of surface potential, concentration, and defects. NANOSCALE 2024; 16:2552-2564. [PMID: 38221893 DOI: 10.1039/d3nr06205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The established DLVO theory explains colloidal stability by the electrostatic repulsion between electrical double layers. While the routinely measured zeta potential can estimate the charges of double layers, it is only an average surface property which might deviate from the local environment. Moreover, other factors such as the ionic strength and the presence of defects should also be considered. To investigate this multivariate problem, here we model the interaction between a negatively charged Au particle and a negatively charged TiO2 surface containing positive/neutral defects (e.g. surface hydroxyls) based on the finite element method, over 6000 conditions of these 6 parameters: VPart (particle potential), VSurf (surface potential), VDef (defect potential), DD (defect density), Conc (salt concentration), and R (particle radius). Using logistic regression, the relative importance of these factors is determined: VSurf > VPart > DD > Conc > R > VDef, which agrees with the conventional wisdom that the surface (and zeta) potential is indeed the most decisive descriptor for colloidal interactions, and the salt concentration is also important for charge screening. However, when defects are present, it appears that their density is more influential than their potential. To predict the fate of interactions more confidently with all the factors, we train a support vector machine (SVM) with the simulation data, which achieves 97% accuracy in determining whether adsorption is favorable on the support. The trained SVM including a graphical user interface for querying the prediction is freely available online for comparing with other materials and models. We anticipate that our model can stimulate further colloidal studies examining the importance of the local environment, while simultaneously considering multiple factors.
Collapse
Affiliation(s)
- Kinran Lau
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| | - Brian Giera
- Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, California, USA
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| | - Sven Reichenberger
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| |
Collapse
|
4
|
Maurya MR, Nandi M, Chaudhary PK, Singh S, Avecilla F, Prasad R, Ghosh K. Catalytic, Antifungal, and Antiproliferative Activity Studies of a New Family of Mononuclear [V IVO]/[V VO 2] Complexes. Inorg Chem 2024; 63:714-729. [PMID: 38150362 DOI: 10.1021/acs.inorgchem.3c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ligands derived from 2-(1-phenylhydrazinyl)pyridine and salicylaldehyde (HL1), 3-methoxysalicylaldehyde (HL2), 5-bromosalicylaldehyde (HL3), and 3,5-di-tert-butylsalicylaldehyde (HL4) react with [VIVO(acac)2] in MeOH followed by aerial oxidation to give [VVO2(L1)] (1), [VVO2(L2)] (2), [VVO2(L3)] (3), and [VVO2(L4)] (4). Complex [VIVO(acac)(L1)] (5) is also isolable from [VIVO(acac)2] and HL1 in dry MeOH. Structures of all complexes were confirmed by single-crystal X-ray and spectroscopic studies. They efficiently catalyze benzyl alcohol and its derivatives' oxidation in the presence of H2O2 to their corresponding aldehydes. Under optimized reaction conditions using 1 as a catalyst precursor, conversion of benzyl alcohol follows the order: 4 (93%) > 2 (90%) > 1 (86%) > 3 (84%) ≈ 5 (84%). These complexes were also evaluated for antifungal and antiproliferative activities. Complex 3 with MIC50 = 16 μg/mL, 4 with MIC50 = 12 μg/mL, and 5 with MIC50 = 16 μg/mL are efficient toward planktonic cells of Candida albicans and Candida tropicalis. On Michigan cancer foundation-7 (MCF-7) cells, they show comparable cytotoxic effects and exhibit IC50 in the 27.3-33.5 μg/mL range, and among these, 4 exhibits the highest cytotoxicity. A similar study on human embryonic kidney cells (HEK293) confirms their less toxicity at lower concentrations (4 to 16 μg/mL) compared to MCF-7.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pankaj Kumar Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
5
|
Muhammad F, Huang F, Cheng Y, Chen X, Wang Q, Zhu C, Zhang Y, Yang X, Wang P, Wei H. Nanoceria as an Electron Reservoir: Spontaneous Deposition of Metal Nanoparticles on Oxides and Their Anti-inflammatory Activities. ACS NANO 2022; 16:20567-20576. [PMID: 36394328 DOI: 10.1021/acsnano.2c07306] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing metal-metal oxide heteronanostructures with synergistic and superior activities (unattainable in the case of a single entity) is of great interest for a wide range of technological applications. Traditional synthetic strategies typically require reducing agents, stabilizing ligands, or high temperature reductive treatment to produce oxide-supported metals. Herein, a facile noble metal deposition strategy is developed to produce silver, gold, and platinum nanocrystals on the surface of hollow mesoporous cerium oxide nanospheres without any pretreatment. Unlike the galvanic replacement reaction, the developed protocol employs the innate reductive potential of CeO2 to produce a high density of ultrafine noble metal nanocrystals homogeneously immobilized onto the surface of CeO2 nanospheres. The multienzyme-like activities (i.e., superoxide dismutase-like and catalase-like) of CeO2@metal nanostructures, originating from CeO2 and metal nanoparticles, were effectively utilized for anti-inflammatory therapies in two in vivo models. This oxygen vacancy-mediated reduction strategy can be generalized to produce diverse metal-metal oxide nanostructures for a wide range of applications.
Collapse
Affiliation(s)
- Faheem Muhammad
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Futao Huang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Cheng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiwen Chen
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenxin Zhu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Zhu WS, Sun D, Yu LL, Zhi SQ, Shan YD, Lu YF, Ren HT, Wu SH, Liu Y, Han X. Selective Photooxidation of Benzyl Alcohol to Benzaldehyde via H-Abstraction by Bi 2.15WO 6 under Alkaline Conditions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wen-Shuang Zhu
- Key Laboratory of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin300350, P. R. China
| | - Dai Sun
- Key Laboratory of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin300350, P. R. China
| | - Ling-Li Yu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin300301, P. R. China
- Tianjin Taipu Pharmaceutical Co., Ltd., Tianjin300462, P. R. China
| | - Shao-Qi Zhi
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, P. R. China
| | - Yu-Dong Shan
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, P. R. China
| | - Yi-Fang Lu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, P. R. China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin300387, P. R. China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin300384, P. R. China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, P. R. China
| |
Collapse
|
7
|
Chen Z, Zou M, Li G, Liu X, Zhou Y, Wang J. Enhancing efficiency of solvent-free oxidation of aromatic alcohols with atmospheric oxygen by POSS-based cationic polymer backbone paired heteropolyanions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Yu S, Li J, Zhang H. Nanosheet array-like Ni Mg Al-LDH/rGO hybrids loaded atomically precise Au nanoclusters for the solvent-free oxidation of benzyl alcohol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
A Novel Pd-P Nano-Alloy Supported on Functionalized Silica for Catalytic Aerobic Oxidation of Benzyl Alcohol. Catalysts 2021. [DOI: 10.3390/catal12010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Catalytic aerobic oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) over supported noble metal catalysts has grabbed the attention of researchers due to the critical role of PhCHO in numerous industrial syntheses. In the present study, a novel catalyst, Pd-P alloy supported on aminopropyl-functionalized mesoporous silica (NH2-SiO2), was prepared through in situ reduction and characterized by BET-BJH analysis, SEM, TEM, XRD, FTIR, TG-DTA, and XPS. Chemical properties and catalytic performance of Pd-P/NH2-SiO2 were compared with those of Pd° nanoparticles (NPs) deposited on the same support. Over Pd-P/NH2-SiO2, the BnOH conversion to PhCHO was much higher than over Pd°/NH2-SiO2, and significantly influenced by the nature of solvent, reaching 57% in toluene at 111 °C, with 63% selectivity. Using pure oxygen as an oxidant in the same conditions, the BnOH conversion increased up to 78%, with 66% selectivity. The role of phosphorous in improving the activity may consist of the strong interaction with Pd that favours metal dispersion and lowers Pd electron density.
Collapse
|
10
|
Hu Q, Yu X, Gong S, Chen X. Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. NANOSCALE 2021; 13:18044-18053. [PMID: 34718365 DOI: 10.1039/d1nr05474k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar energy conversions play a vital role in the renewable energy industry. In recent years, photoredox organic transformations have been explored as an alternative way to use solar energy. Catalysts for such photocatalytic systems have evolved from homogeneous metal complexes to heterogeneous nanomaterials over the past few decades. Herein, three important carrier transfer mechanisms are presented, including charge transfer, energy transfer and hot carrier transfer. Several models established by researchers to understand the catalytic reaction mechanisms are also illustrated, which promote the reaction system design based on theoretical studies. New strategies are introduced in order to enhance catalytic efficiency for future prospects.
Collapse
Affiliation(s)
- Qiushi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Xuemeng Yu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Shaokuan Gong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
11
|
Yuan Y, Jin N, Saghy P, Dube L, Zhu H, Chen O. Quantum Dot Photocatalysts for Organic Transformations. J Phys Chem Lett 2021; 12:7180-7193. [PMID: 34309389 DOI: 10.1021/acs.jpclett.1c01717] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantum dots (QDs) with tunable photo-optical properties and colloidal nature are ideal for a wide range of photocatalytic reactions. In particular, QD photocatalysts for organic transformations can provide new and effective synthetic routes to high value-added molecules under mild conditions. In this Perspective, we discuss the advances of employing QDs for visible-light-driven organic transformations categorized into net reductive reactions, net oxidative reactions, and redox neutral reactions. We then provide our outlook for potential future directions in the field: nanostructure engineering to improve charge separation efficiencies, ligand shell engineering to optimize overall catalyst performance, in situ comprehensive studies to delineate underlying reaction mechanisms, and laboratory automation with the assistance of modern computing techniques to revolutionize the reaction optimization process.
Collapse
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Peter Saghy
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lacie Dube
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hua Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Zhang K, Lu G, Chu F, Huang X. Au/TiO2 nanobelts: thermal enhancement vs. plasmon enhancement for visible-light-driven photocatalytic selective oxidation of amines into imines. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01333e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Au NPs improve the photocatalytic activity of TiO2 only in a low temperature range. Excessive Au NPs loaded on TiO2 inhibit the photocatalytic amine conversion due to the decreased oxygen vacancies and poor amine adsorption ability.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guilong Lu
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Chu
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|