1
|
Hussain S, Kunthom R, Liu H. Hybrid Dendrimer Network based on Silsesquioxane and Glycidyl Methacrylate for Enhanced Adsorption of Iodine and Dyes in Environmental Remediation. Chem Asian J 2024; 19:e202400584. [PMID: 39031799 DOI: 10.1002/asia.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/22/2024]
Abstract
A novel hybrid network was synthesized in two steps: the first step involved the attachment of glycidyl methacrylate (GMA) to octa(aminophenyl) silsesquioxane (OAPS) through a ring-opening reaction, forming a hybrid dendrimer structure, and the second step involved the cross-linking of hybrid dendrimer using an azobisisobutyronitrile initiator to create the final hybrid network of OAPS-GMA. The synthesized hybrid material was comprehensively characterized using fourier transform infrared Spectroscopy (FTIR), nuclear magnetic resonance ((1H, 13C, and 29Si NMR) spectroscopy, thermogravimetric Analysis (TGA), and scanning electron microscopy (SEM). The BET surface area was found to be 25.44 m2/g, and significant 2.341 cm3/g of total pore volume was observed. The TGA analysis shows that the material is highly stable up to 450 °C. The synthesized network demonstrated remarkable adsorption capacities for iodine and dyes. It exhibited an iodine adsorption capacity of 3.4 g/g from vapors and 874 mg/g from solution. Additionally, it showed significant adsorption capacities for Rhodamine B and Congo red, with values of 762 mg/g and 517 mg/g, respectively. This study not only provides a novel method for preparing GMA-functionalized silsesquioxane-based porous hybrid polymers but also contributes to advancing solutions for environmental pollution issues.
Collapse
Affiliation(s)
- Saddam Hussain
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Barik D, Anilkumar A, Porel M. Solid-State Fluorescent Organic Polymers for Visual Detection and Elimination of Heavy Metals in Water. ACS POLYMERS AU 2024; 4:428-437. [PMID: 39399891 PMCID: PMC11468486 DOI: 10.1021/acspolymersau.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 10/15/2024]
Abstract
Selective sensing and removal of toxic heavy metals from water are highly essential since their presence poses significant health and environmental hazards. Herein, we designed and synthesized a novel fluorescent nonconjugated organic polymer by strategically incorporating two key functional groups, namely, a dansyl fluorophore and dithiocarbamate (DTC). Different characterization techniques, including 1H nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and fluorescence spectroscopy, were performed to understand its structure and material properties. The quantum yield of 4.72% and its solid-state fluorescence indicate that it has potential for various applications in several technological and scientific domains. In this study, we investigated a specific application involving the detection and elimination of heavy metals from water. Interestingly, the presence of dansyl and DTC moieties demonstrated remarkable selectivity toward Cu2+, Co2+, Ni2+, Fe3+, and Fe2+ sensing, displaying distinct color changes specific to each metal. Cu2+ resulted in a yellow color, Co2+ showed a green color, Ni2+ displayed a pale yellowish-green color, and Fe2+/Fe3+ exhibited a brown color. The LOD (limit of detection) for each metal was obtained in the nanomolar range by using a fluorescence spectrometer and the micromolar range from UV-visible spectra: 13.27 nM and 0.518 μM for Cu2+, 8.27 nM and 0.581 μM for Co2+, 14.36 nM and 0.140 μM for Ni2+, 14.95 nM and 0.174 μM for Fe2+, and 15.54 nM and 0.33 μM for Fe3+. Moreover, the DTC functionality on its backbone facilitates effective interaction with the aforementioned heavy metals, subsequently removing them from water (except Fe2+ and Fe3+), validating its dual functionality as both an indicator and a purifier for heavy metals in water. The polymer exhibited a maximum adsorption capacity of 192.30 mg/g for Cu2+, 159.74 mg/g for Co2+, and 181.81 mg/g for Ni2+. Furthermore, this approach exhibits versatility in crafting fluorescent polymers with adjustable attributes that are suitable for a wide range of applications.
Collapse
Affiliation(s)
- Debashis Barik
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
| | - Abhirami Anilkumar
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
| | - Mintu Porel
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad 678623, India
- Environmental
Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
3
|
Lu C, Han J, Li N, Chen D, Xu Q, Li H, Lu J. Triazine-based conjugated polymers with regulation of D-A configuration for enhanced photocatalytic activity. J Colloid Interface Sci 2024; 668:59-67. [PMID: 38669996 DOI: 10.1016/j.jcis.2024.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Photocatalysis is a green and environmentally friendly method for degrading dangerous and nonbiodegradable pollutants. In this study, a sequence of metal-free triazine-based electronic donor-acceptor (D-A) conjugated polymers Tr-X (X = Th, BT, BTh) were prepared by D-A configuration regulation between triazine (Tr) and monomers containing N and S, such as thiophene (Th), bithiophene (BTh) and benzothiadiazole (BT) units, for the photocatalytic degradation of bisphenol A (BPA) and benzene contaminants in water under visible light. Among these, Tr-BTh exhibited complete photocatalytic degradation owing to its excellent D-A configuration. Moreover, the N and S atoms, which are rich in triazine and thiophene units, serve as highly dispersed reactive sites. The separation and transfer of photogenerated carriers can be further improved by expanding the light-absorption range of polymers. In addition, the polymers showed good adsorption for BPA and other aromatic organic pollutants through π-π interaction and surface hydrogen bonding, which provides a facile strategy for efficient polymer-based photocatalysts for water purification.
Collapse
Affiliation(s)
- Chengwei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Chen Q, Liao J, Zeng S, Zhou L. Facile Fabrication of Porous Adsorbent with Multiple Amine Groups for Efficient and Selective Removal of Amaranth and Tartrazine Dyes from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2391. [PMID: 38793458 PMCID: PMC11122749 DOI: 10.3390/ma17102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
The development of an advanced dye adsorbent that possesses a range of beneficial characteristics, such as high adsorption capacity, swift adsorption kinetics, selective adsorption capability, and robust reusability, remains a challenge. This study introduces a facile method for fabricating an amine-rich porous adsorbent (ARPA), which is specifically engineered for the adsorptive removal of anionic dyes from aqueous solutions. Through a comprehensive assessment, we have evaluated the adsorption performance of ARPA using two benchmark dyes: amaranth (ART) and tartrazine (TTZ). Our findings indicate that the adsorption process reaches equilibrium in a remarkably short timeframe of just 20 min, and it exhibits an excellent correlation with both the Langmuir isotherm model and the pseudo-second-order kinetic model. Furthermore, ARPA has demonstrated an exceptional maximum adsorption capacity, with values of 675.68 mg g-1 for ART and 534.76 mg g-1 for TTZ. In addition to its high adsorption capacity, ARPA has also shown remarkable selectivity, as evidenced by its ability to selectively adsorb TTZ from a mixed dye solution, a feature that is highly desirable for practical applications. Beyond its impressive adsorption capabilities, ARPA can be efficiently regenerated and recycled. It maintains a high level of original removal efficiency for both ART (76.8%) and TTZ (78.9%) even after five consecutive cycles of adsorption and desorption. Considering the simplicity of its synthesis and its outstanding adsorption performance, ARPA emerges as a highly promising material for use in dye removal applications. Consequently, this paper presents a straightforward and feasible method for the production of an effective dye adsorbent for environmental remediation.
Collapse
Affiliation(s)
- Qingli Chen
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Liao
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sihua Zeng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
5
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
6
|
Mehraban Khaledi S, Taherimehr M, Hassaninejad-Darzi SK. Porous Fe-Porphyrin as an Efficient Adsorbent for the Removal of Ciprofloxacin from Water. ACS OMEGA 2024; 9:15950-15958. [PMID: 38617652 PMCID: PMC11007850 DOI: 10.1021/acsomega.3c09200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Antibiotics are widely used in medicine, but they are not fully metabolized in the body and can end up in wastewater. Conventional wastewater treatment methods fail to completely remove antibiotic residues, which can then enter rivers and streams. Adsorption is a promising technique for removing antibiotics from wastewater, even at low concentrations. The successful one-pot synthesis of an adsorbent, iron-containing porphyrin-based porous organic polymer (Fe-POP), was achieved through the reaction of pyrrole groups and terephthalaldehyde in the presence of FeCl3. Characterized by a substantial BET surface area of 597 m2 g-1, Fe-POP was systematically investigated for its adsorption potential in the removal of the antibiotic Ciprofloxacin (CIP) from aqueous solutions. By systematic variation of key parameters, including pH, adsorbent loading, and CIP concentration, the adsorption conditions were optimized. Under the optimal conditions at pH = 3, CIP concentration of 5 ppm, and 25 mg of Fe-POP, the maximum adsorption capacity reached an impressive 263 mg g-1. The robust adsorption behavior was elucidated through the fitting of experimental data to the Langmuir adsorption isotherm (R2 = 0.962) and the pseudo-second-order kinetic model (R2 = 0.999) with lower error values. These models suggested that the adsorption process predominantly involved chemical interactions between CIP molecules and the Fe-POP surface. Fe-POP exhibited a robust structure with a high adsorption capacity, showcasing its efficacy in removing CIP contaminants from water. Therefore, Fe-POP can be considered a valuable adsorbent for water treatment applications, specifically for antibiotic removal.
Collapse
Affiliation(s)
| | - Masoumeh Taherimehr
- Department of Chemistry, Babol
Noshirvani University of Technology, Babol 47148-71167, Iran
| | | |
Collapse
|
7
|
Zhang Y, Zhang D, Liu H, Sun B. Photostimulus-Responsive Peptide Dot-Centered Covalent Organic Polymers: Effective Pesticide Sensing via Enhancing Accessibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14208-14217. [PMID: 38445958 DOI: 10.1021/acsami.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 μg L-1 to cartap over the range of 1-80 μg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
8
|
Guo Y, Wang J, Liu W, Liu J, Wang C, Wu Q, Wang Z. Construction of magnetic hydroxyl group-enriched hyper cross-linked polymers with functional triazine as the core for efficient enrichment of plant growth regulators. Food Chem 2024; 433:137309. [PMID: 37683476 DOI: 10.1016/j.foodchem.2023.137309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The determination of trace plant growth regulators (PGRs) residues in water and food samples make it crucial to develop novel sample pretreatment methods for the enrichment of PGRs. Herein, a novel magnetic hyper cross-linked polymer (M-CTT-9OH-HCP) was constructed and served as a magnetic adsorbent for the efficient extraction of some PGRs from water, watermelon, tomatoes, and milk samples for the first time. Combined with high performance liquid chromatography-fluorescence detection (HPLC-FLD), the established method presented a good linearity (0.03-60.0 ng g-1 (ng mL-1), (r) ≥ 0.9973), satisfactory accuracy with method recoveries (83.0%-119%) and acceptable precision with the intra-day and inter-day variations (expressed as the relative standard deviations (RSDs) ≤ 9.8%). The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.01-1.50 and 0.03-5.00 ng g-1/ ng mL-1. The results show that the established method is sensitive and efficient for the determination of PGRs in real samples.
Collapse
Affiliation(s)
- Yaxing Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Juntao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiajia Liu
- China Petroleum Engineering & Construction Corp. North China Company, Renqiu 062550, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Cao XM, Zhang AY, Cui WR, Liu LY, Zhang YX, Lin H, Zhang Y. Azo-Linked Porous Polycalix[ n]arenes for the Efficient Removal of Organic Micropollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:957-965. [PMID: 38151466 DOI: 10.1021/acsami.3c18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[n]arenes (n = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants. It was proved that Azo-CX8P was especially efficient in the removal of cationic dyes because of its high negative surface charge. In terms of the adsorption of Rhodamine B with Azo-CX8P, the pseudo-second-order rate constant reaches 5.025 g·mg-1·min-1 with the maximum adsorption capacity being 1345 mg·g-1. These values are significantly higher compared with those recorded for most adsorbents. In addition, the easily prepared Azo-CX8P can be reused at least six times without a loss of the adsorption efficiency, demonstrating its potential use in water purification.
Collapse
Affiliation(s)
- Xiao-Mei Cao
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ai-Ying Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei-Rong Cui
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lu-Yao Liu
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yu-Xuan Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
10
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent. RSC Adv 2024; 14:1316-1329. [PMID: 38174277 PMCID: PMC10763660 DOI: 10.1039/d3ra04222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Water pollution from organic dyes poses a serious danger to the environment. In the present work, we report a novel adsorbent (ADFS) based on azo-dye-functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of the anionic dye bromophenol blue (BPB) from contaminated water. The fabricated SPIONs, azo dye, and ADFS adsorbent were characterized with FTIR and UV-vis absorption spectroscopy, 1HNMR spectroscopy, mass spectrometry, SEM imaging, dynamic light scattering (DLS), zeta potential measurements, vibrating sample magnetometry, thermogravimetric analysis, differential thermal analysis, and X-ray diffraction analysis. DLS measurements showed a particle size of 46.1 and 176.5 nm for the SPIONs and the ADFS, respectively. The adsorbent exhibited an adsorption capacity of 7.43 mg g-1 and followed the pseudo-second-order kinetics model (r2 = 0.9981). The ADFS could efficiently remove BPB from water after stirring for 120 minutes at room temperature and pH 2. The adsorption process was proved to occur via physisorption, as revealed by the Freundlich isotherm (n = 1.82 and KF = 11.5). Thermodynamic studies implied that the adsorption is spontaneous (-8.03 ≤ ΔG ≤ -0.58 kJ mol-1) and enthalpy-driven might take place via van der Waals interactions and/or hydrogen bonding (ΔH = -82.19 kJ mol-1 and ΔS = -0.24 kJ mol-1 K-1).
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
- General Organization for Export and Import Control Ramses Street Cairo Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
11
|
Salahvarzi M, Setaro A, Ludwig K, Amsalem P, Schultz T, Mehdipour E, Nemati M, Chong C, Reich S, Adeli M. Synthesis of two-dimensional triazine covalent organic frameworks at ambient conditions to detect and remove water pollutants. ENVIRONMENTAL RESEARCH 2023; 238:117078. [PMID: 37704076 DOI: 10.1016/j.envres.2023.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Synthesis of fully triazine frameworks (C3N3) by metal catalyzed reactions at high temperatures results in carbonized and less-defined structures. Moreover, metal impurities affect the physicochemical, optical and electrical properties of the synthesized frameworks, dramatically. In this work, two-dimensional C3N3 (2DC3N3) has been synthesized by in situ catalyst-free copolymerization of sodium cyanide and cyanuric chloride, as cheap and commercially available precursors, at ambient conditions on gram scale. Reaction between sodium cyanide and cyanuric chloride resulted in electron-poor polyfunctional intermediates, which converted to 2DC3N3 with several hundred micrometers lateral size at ambient conditions upon [2 + 2+2] cyclotrimerization. 2DC3N3 sheets, in bulk and individually, showed strong fluorescence with 63% quantum yield and sensitive to small objects such as dyes and metal ions. The sensitivity of 2DC3N3 emission to foreign objects was used to detect low concentration of water impurities. Due to the high negative surface charge (-37.7 mV) and dispersion in aqueous solutions, they demonstrated a high potential to remove positively charged dyes from water, exemplified by excellent removal efficiency (>99%) for methylene blue. Taking advantage of the straightforward production and strong interactions with dyes and metal ions, 2DC3N3 was integrated in filters and used for the fast detection and efficient removal of water impurities.
Collapse
Affiliation(s)
| | - Antonio Setaro
- Department of Physics, Free University Berlin, Arnimallee 14, 14195, Berlin, Germany; Department of Engineering, Pegaso University, Naples, Italy
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Patrick Amsalem
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489, Berlin, Germany
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489, Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, 14109, Germany
| | | | - Mohammad Nemati
- Department of Chemistry, Lorestan University, Khorramabad, Iran
| | - Cheng Chong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Stephanie Reich
- Department of Physics, Free University Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
12
|
Lu M, Wang Y, Yu J, Li D, Zhao Q, Chi R. Treating waste with waste: Adsorption of anionic dyes in wastewater with surfactant-modified phosphogypsum. ENVIRONMENTAL RESEARCH 2023; 237:116963. [PMID: 37619625 DOI: 10.1016/j.envres.2023.116963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Phosphogypsum (PG) is a solid waste generated during the wet process of phosphoric acid production. The environmental-friendly disposal and recycling of PG is vital in the field of environmental solid waste treatment. In this study, PG is used for adsorbent of dyes in wastewater to achieve the goal of recycling waste with waste. Surfactant-modified phosphogypsum (ODBAC@PG) was prepared using octadecyl dimethyl benzyl ammonium chloride (ODBAC) as modifier. ODBAC@PG exhibits high adsorption capability for anionic dyes (methyl blue (MeB) and indocyanine carmine (IC)). The pseudo-second-order kinetic model fits the kinetic experimental data for the adsorption of two organic anionic dyes. Langmuir adsorption isotherm fits the adsorption characteristics of MeB and IC on ODBAC@PG, exhibiting a monolayer adsorption pattern. Thermodynamic parameters indicate the spontaneous and exothermic properties of MeB and IC on ODBAC@PG. MeB and IC have antagonistic effects on each other in binary adsorption system. High adsorption capacity after six cycles of experiments demonstrates the high reusability of ODBAC@PG. The nature for the adsorption includes electrostatic interaction, hydrogen bond and hydrophobic interaction. Using ODBAC@PG for dyes wastewater treatment can accomplish the goal of treating waste with waste and turning waste into treasure.
Collapse
Affiliation(s)
- Meng Lu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Yao Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Dezeng Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China.
| | - Qingbiao Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Three Gorges Laboratory, No. 1 Mazongling Rd, Xiaoting District, Yichang City, Hubei 443007, PR China.
| | - Ruan Chi
- Hubei Three Gorges Laboratory, No. 1 Mazongling Rd, Xiaoting District, Yichang City, Hubei 443007, PR China
| |
Collapse
|
13
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
14
|
Xue T, Shao F, Miao H, Li X. Porous polymer magnetic adsorbents for dye wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97147-97159. [PMID: 37584804 DOI: 10.1007/s11356-023-29102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
Dye wastewater discharged from industries has caused serious environmental problems. The recent decade has witnessed adsorption technology emerging as an advanced dye wastewater treatment method with great potential Therefore, we fabricated two kinds of magnetic porous adsorbents (HSF and HSVF) with different specific surface areas and activity sites. Both of which exhibit excellent performance with remarkable dye adsorption capacities, especially HSVF. We further investigated their adsorption kinetic and isotherm in detail. Therein, HSVF showed a nice desorption capacity, and it could be recycled rapidly by magnetism, which exhibited the advantages of effective, easy operation, and low cost. In addition, their adsorption kinetic and isotherm were further studied and compared in detail. The results revealed that introducing strong active sites could improve both the adsorption capacity and rate effectively even though sacrificing part of specific surface areas, indicating that active sites might play a dominant role during the dye adsorption process.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Feifei Shao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Han Miao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xinxin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
15
|
Wang L, Wang J, Wu R, Chen G, Gao Q, Shao F, Zhang D, Zhang X, Fan C, Fan Y. Designed Construction of 2D Honeycomb Cationic MOF Materials for Selective Removal of Sulfonic Anionic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6258-6265. [PMID: 37074756 DOI: 10.1021/acs.langmuir.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various carcinogenic dyes in water bodies are difficult to degrade due to their stability to light and oxidants, causing extended pollution. In this study, MOF 1 ({[Co(tib)2]·(H2O)2·SO4}n) and MOF 2 ({[Cu(tib)2]·(H2O)2·SO4}n) (tib = 1,3,5-tirs(1-imidazolyl)benzene) were synthesized by the solvothermal method. MOFs 1 and 2 were successfully characterized by single-crystal X-ray diffraction (XRD) and powder X-ray diffraction (PXRD). Based on the structural characteristics of MOFs 1 and 2, we designed two cationic MOF material skeletons, namely, MOFs I and II ([Co(tib)22+]n and [Cu(tib)22+]n), which were obtained by calcination in combination with the thermogravimetric curve to remove the free components in the lattice. As expected, MOFs I and II showed an excellent adsorption effect on sulfonic anionic dyes. Notably, the adsorption capacity of MOF I can reach 2922.8 mg g-1 for Congo Red (CR) at room temperature (RT). The adsorption process fits the pseudo-second-order kinetic model and Freundlich isotherm model. Moreover, zeta potential tests and quantum chemical calculations indicate that electrostatic interactions and hydrogen bond between the hydroxyl group on the sulfonic acid group and the N atom on the imidazole ring mainly promote the adsorption of CR dyes on MOF I. MOFs I and II are revealed as a promising novel adsorption material to remove hazardous organic aromatic pollutants with high efficiency in future endeavors.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Ruixue Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Guobo Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Qian Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Chuanbin Fan
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
16
|
Lan L, Huang Y, Du Z, Dan Y, Jiang L. Visible light controllable adsorption-desorption of gaseous toluene on β-ketoenamine-linked porous organic polymer. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Wang H, Qiu N, Kong X, Hu Z, Zhong F, Li Y, Tan H. Novel Carbazole-Based Porous Organic Polymer for Efficient Iodine Capture and Rhodamine B Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36881562 DOI: 10.1021/acsami.3c00918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A new porous organic polymer (CTF-CAR), which takes carbazole as the electron-rich center unit and thiophenes as the auxiliary group, has been synthesized through catalyst-free Schiff-base polymerization. At the same time, the structure, thermal stability, morphology, and other basic properties of the polymer were analyzed by IR, NMR, TGA, and SEM. Then, CTF-CAR was applied to iodine capture and rhodamine B adsorption. Due to its strong electron donor ability and abundant heteroatom binding sites, which have a positive effect on the interaction between the polymer network and adsorbates, CTF-CAR exhibits high uptake capacities for iodine vapor and rhodamine B as 2.86 g g-1 and 199.7 mg g-1, respectively. The recyclability test also confirmed that it has good reusability. We found that this low-cost and catalyst-free synthetic porous organic polymer has great potential for the treatment of polluted water and iodine capture.
Collapse
Affiliation(s)
- Hongyu Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Na Qiu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiangfei Kong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhenguang Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fuxin Zhong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yongsheng Li
- China Academy of Science & Technology Development GuangXi Branch, Nanning 530022, China
| | - Haijun Tan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
18
|
Song Y, Phipps J, Zhu C, Ma S. Porous Materials for Water Purification. Angew Chem Int Ed Engl 2023; 62:e202216724. [PMID: 36538551 DOI: 10.1002/anie.202216724] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
19
|
Ibrahim SM, Saeed AM, Elmoneam WRA, Mostafa MA. Synthesis and Characterization of new Schiff base bearing bis(pyrano[3,2-c]quinolinone): Efficient cationic dye Adsorption from aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
20
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Das R, Paul R, Parui A, Shrotri A, Atzori C, Lomachenko KA, Singh AK, Mondal J, Peter SC. Engineering the Charge Density on an In 2.77S 4/Porous Organic Polymer Hybrid Photocatalyst for CO 2-to-Ethylene Conversion Reaction. J Am Chem Soc 2023; 145:422-435. [PMID: 36537351 DOI: 10.1021/jacs.2c10351] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of an efficient photocatalyst for C2 product formation from CO2 is of urgent importance toward the deployment of solar-fuel production. Here, we report a template-free, cost-effective synthetic strategy to develop a carbazole-derived porous organic polymer (POP)-based composite catalyst. The composite catalyst is comprised of In2.77S4 and porous organic polymer (POP) and is held together by induced-polarity-driven electrostatic interaction. Utilizing the synergy of the catalytically active In centers and light-harvesting POPs, the catalyst showed 98.9% selectivity toward the generation of C2H4, with a formation rate of 67.65 μmol g-1 h-1. Two different oxidation states of the In2.77S4 spinel were exploited for the C-C coupling process, and this was investigated by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations. The role of POP was elucidated via several photophysical and photoelectrochemical studies. The electron transfer was mapped by several correlated approaches, which assisted in establishing the Z-scheme mechanism. Furthermore, the mechanism of C2H4 formation was extensively investigated using density functional theory (DFT) calculations from multiple possible pathways.
Collapse
Affiliation(s)
- Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Arko Parui
- Materials Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo001-0021, Japan
| | - Cesare Atzori
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | - Kirill A Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043Grenoble Cedex 9, France
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
22
|
Tian L, Zhou S, Zhao J, Xu Q, Li N, Chen D, Li H, He J, Lu J. Sulfonate-modified calixarene-based porous organic polymers for electrostatic enhancement and efficient rapid removal of cationic dyes in water. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129873. [PMID: 36067555 DOI: 10.1016/j.jhazmat.2022.129873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Developing of fast and efficient adsorbents for removal of low concentration refractory organics in water is significant. Herein, a novel calix[4]arene-based porous organic polymer CaPy is constructed through Sonogashira-Hagihara cross-coupling polycondensation. The strong polar sulfonate is further anchored onto the polymer skeleton of CaPy and three sulfonate-modified anionic polymers CaPy-S1, CaPy-S2, and CaPy-S3 were obtained and fully characterized. The adsorption isotherms showed that the maximum adsorption capacities of CaPy, CaPy-S1, CaPy-S2, and CaPy-S3 toward methylene blue (MB) were 270, 1454, 558 and 1381 mg g-1, whereas those for Rhodamine B (RhB) were 183, 2653, 1132, and 1796 mg g-1, respectively. The maximum adsorption capacity toward RhB was the highest reported vale among the currently used synthetic adsorbents. In addition, the pseudo-second-order rate constants of CaPy, CaPy-S1, CaPy-S2, and CaPy-S3 toward MB were 0.00572, 0.488, 2.24, and 0.192 g mg-1 min-1, respectively, and those toward RhB were 0.000234, 0.138, 0.0819, and 0.203 g mg-1 min-1, respectively. The pseudo-second-order rate constant of CaPy-S2 toward MB was 2.24 g mg-1 min-1 indicating one of the highest adsorption speeds. The activation energy of CaPy-S1 for RhB and MB were 121 and 109 kJ mol-1, respectively, demonstrating that the adsorption of both dyes on CaPy-S1 was chemisorption process. Further, the obtained values of Gibbs free energy were negative, revealing that the adsorption process was spontaneous. This work provides an effective approach for improving adsorption performance via post-modification.
Collapse
Affiliation(s)
- Lechen Tian
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shiyuan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaojiao Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
23
|
Sun H, Lee SY, Park SJ. Bimetallic CuPd alloy nanoparticles decorated ZnO nanosheets with enhanced photocatalytic degradation of methyl orange dye. J Colloid Interface Sci 2023; 629:87-96. [PMID: 36152583 DOI: 10.1016/j.jcis.2022.09.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
Photocatalytic technology is widely explored as a promising alternative for water treatments. However, low photocatalytic efficiency and selectivity usually limit its practical application. Herein, we develop the synthesis of two-dimensional zinc oxide (ZnO) nanosheets decorated with copper (Cu)-palladium (Pd) bimetallic nanoparticles (NPs) for the degradation of organic dyes in an aqueous solution. Compared to pristine ZnO nanosheets, the prepared CuPd/ZnO composites exhibited superior performance for the photocatalytic degradation of organic dyes under visible-light irradiation. The remarkable improvement of degradation activity was attributable to the enhanced separation and transfer efficiency of photogenerated charge carriers. The highest catalytic efficiency of CuPd/ZnO nanocomposite with the CuPd content of 0.5 wt% exhibited 95.3% removal of methyl orange (MO) (40 mg/L) within 45 min. From the experimental data, we believe this study provides a new avenue for the design and fabrication of high-performance photocatalysts capable of water treatments.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| |
Collapse
|
24
|
Guo L, Tian M, Wang L, Zhou X, Wang Q, Hao L, Wu Q, Wang Z, Wang C. Synthesis of hydroxyl-functional magnetic hypercrosslinked polymer as high efficiency adsorbent for sensitively detecting neonicotinoid residues in water and lettuce samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Wang W, Lai X, Yan S, Zhu L, Yao Y, Ding L. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Guo JZ, Xu H, Chen L, Li B. A pyridinium functionalization chitosan for efficient elimination of methyl orange and Cr(VI). BIORESOURCE TECHNOLOGY 2022; 365:128112. [PMID: 36244604 DOI: 10.1016/j.biortech.2022.128112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
A pyridinium functionalization chitosan (PCS) at high yield was facilely and solvothermally obtained from reactions of chitosan with N-2,4-dinitrophenyl-pyridinium chloride. The morphology and physical-chemical properties of PCS were tested with various techniques. Its sorption behaviors towards methyl orange (MO) and Cr(VI) were systematically investigated. Pseudo-second-order kinetic and Langmuir equations well fitted the sorption kinetics and isotherms, respectively. Thermodynamics analyses revealed the spontaneous and endothermic sorption of these two contaminants. PCS exhibited high sorption capacity of 1649.30 mg·g-1 MO and 200.46 mg·g-1 Cr(VI) at 308 K. The superior sorption performance of PCS over MO is ascribed to ion exchange, intermolecular hydrogen bond, and electrostatic and π-π interactions, while sorption of PCS over Cr(VI) is mainly driven by electrostatic forces, reduction and ion exchange. Moreover, the PCSexceeded 95 % of its original capacities during five cycles. This high sorption capacities and high reusability make PCS an excellent sorbent candidate towards anionic contaminants.
Collapse
Affiliation(s)
- Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Huan Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
27
|
Jeyavani V, Mukherjee SP. Crystal Phase and Morphology-Controlled Synthesis of Tungsten Oxide Nanostructures for Remarkably Ultrafast Adsorption and Separation of Organic Dyes. Inorg Chem 2022; 61:18119-18134. [DOI: 10.1021/acs.inorgchem.2c02715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vijayakrishnan Jeyavani
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Shatabdi Porel Mukherjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
28
|
Atoufi Z, Cinar Ciftci G, Reid MS, Larsson PA, Wågberg L. Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity. Biomacromolecules 2022; 23:4934-4947. [DOI: 10.1021/acs.biomac.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaleh Atoufi
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Goksu Cinar Ciftci
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Michael S. Reid
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Per A. Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44Stockholm, Sweden
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, SE-100 44Stockholm, Sweden
| |
Collapse
|
29
|
Selective removal of cationic organic dyes via electrospun nanofibrous membranes derived from polyarylene ethers containing pendent nitriles and sulfonates. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Li S, Zhang Y, Xiang K, Chen J, Wang J. Designing a novel type of multifunctional soil conditioner based on 4-arm star-shaped polymer modified mesoporous MCM-41. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Mohammadi AA, Niazi Z, Heidari K, Afarinandeh A, Samadi Kazemi M, Haghighat GA, Vasseghian Y, Rezania S, Barghi A. Nickel and iron-based metal-organic frameworks for removal of organic and inorganic model contaminants. ENVIRONMENTAL RESEARCH 2022; 212:113164. [PMID: 35398078 DOI: 10.1016/j.envres.2022.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are a promising class of porous nanomaterials in the field of environmental remediation. Ni-MOF and Fe-MOF were chosen for their advantages such as structural robustness and ease of synthesis route. The structure of prepared MOFs was characterized using FE-SEM, XRD, FTIR, and N2 adsorption-desorption. The efficiency of MOFs to remove organic model contaminants (anionic Alizarin Red S (ARS) and cationic malachite green (MG) and inorganic fluoride was studied. Fe-MOF and Ni-MOF adsorbed 67, 88, 6% and 32, 5, and 9% of fluoride, ARS, and MG, respectively. Further study on ARS adsorption by Fe-MOF showed that the removal efficiency was high in a wide range of pH from 3 to 9. Moreover, dye removal was directly increased by adsorbent mass (0.1-0.75 g/L) and decreased by ARS concentration (25-100 mg/L). The pseudo-first-order kinetic model and Langmuir isotherm model with a qmax of 176.68 mg/g described the experimental data well. The separation factor, KL, was in the range of 0-1, which means the adsorption process was favorable. In conclusion, Fe-MOF showed remarkable adsorption of organic and inorganic model contaminants.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Kambiz Heidari
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Amir Afarinandeh
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Gholam Ali Haghighat
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Anahita Barghi
- Department of Molecular Genetics, Dong-A University, Busan, 4915, South Korea
| |
Collapse
|
32
|
Highly magnetically responsive porous nanoparticles based on tris(β-keto-hydrazo)-cyclohexane subunit: Fast removal of dyes from water with convenient recyclability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
34
|
He Y, Fu X, Li B, Zhao H, Yuan D, Na B. Highly Efficient Organic Dyes Capture Using Thiol-Functionalized Porous Organic Polymer. ACS OMEGA 2022; 7:17941-17947. [PMID: 35664628 PMCID: PMC9161400 DOI: 10.1021/acsomega.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
It is of great significance to develop new materials for efficient capture cationic dyes methylene blue (MB) and malachite green (MG). In this work, a novel triptycene-based porous organic polymer with abundant thiol groups (TPP-SH) was prepared successfully by postmodification with a high surface area and robust triptycene-based porous organic polymer (TPP). The obtained TPP-SH exhibited a high surface area, good porosity, and good thermal stability. In addition, TPP-SH was highly effective at capturing MB and MG from aqueous solution because of the abundant thiols in its hierarchical structure. Under optimal adsorption conditions, the maximum adsorption capacities of MB and MG calculated by the Langmuir model at room temperature were 1146.3 and 689.6 mg g-1, respectively. These values are higher than those of many reported materials. The MB and MG adsorption rates were 0.0154 and 6.69 × 10-4 mg g-1 min-1, respectively. Furthermore, the polymer TPP-SH had a good recycling performance after adsorption-desorption at least five times. Therefore, the TPP-SH exhibited a high adsorption capacity, fast adsorption kinetics, and easy-recycling behavior, providing a new avenue for the preparation of green functionalized adsorbents with good performance for water decontamination.
Collapse
Affiliation(s)
- Yan He
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Xiaolei Fu
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Bo Li
- College
of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haitao Zhao
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Dingzhong Yuan
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Bing Na
- Jiangxi
Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,
School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
35
|
Üzüm G, Akın Özmen B, Tekneci Akgül E, Yavuz E. Emulsion-Templated Porous Polymers for Efficient Dye Removal. ACS OMEGA 2022; 7:16127-16140. [PMID: 35571856 PMCID: PMC9097204 DOI: 10.1021/acsomega.2c01472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A high internal phase emulsion (HIPE) method was used to produce adsorbents with an interconnected porous structure. HIPE was prepared using vinyl benzyl chloride (VBC), divinylbenzene (DVB), tert-butyl acrylate, and Span80 as the organic phase and water with K2S2O8 and CaCl2 as the water phase. The polymerization of the organic phase produced highly porous polymers called polyHIPE, carrying two functional groups. As a result of the template method, polyHIPEs have a low surface area. To overcome this drawback, polyHIPE was hyper-cross-linked through VBC to create meso- and micropores, resulting in a higher surface area. Then the polymer surface was tailored with carboxylic acid groups by simple hydrolysis of tert-butyl acrylate. The adsorption performances of the acidic functional hyper-cross-linked polyHIPEs prepared for the various reaction times of 0, 15, and 60 min were compared for methylene blue. The hyper-cross-linked polyHIPEs showed an enhanced adsorption kinetics for methylene blue, and the 15 min hyper-cross-linking reaction increased the rate of methylene blue adsorption significantly. It was proven that the polyHIPE adsorbent can be reused by treating it with an aqueous acidic solution in ethanol.
Collapse
|
36
|
Yan J, Guo Y, Xie S, Wang Q, Leng Z, Li D, Qi K, Sun H. Facile Preparation of Cost‐Effective Triphenylamine‐Based Nanoporous Organic Polymers for CO
2
, I
2
, and Organic Solvents Capture. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Yide Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Siyu Xie
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Qilin Wang
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Zesong Leng
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Dan Li
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Kangru Qi
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology School of Materials Science and Engineering North Minzu University Yinchuan 750021 China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials Yinchuan 750021 China
| |
Collapse
|
37
|
Singh M, Pradeep CP. Modulation of photocatalytic properties through counter-ion substitution: tuning the bandgaps of aromatic sulfonium octamolybdates for efficient photo-degradation of rhodamine B. Dalton Trans 2022; 51:3122-3136. [PMID: 35112681 DOI: 10.1039/d1dt03609b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulating the photocatalytic properties of polyoxometalate-organic hybrids through counterion substitution is a less explored concept. In this study, a new series of aromatic sulfonium counterions (ASCs) having the general formula X-C6H4-S(Me2)+, where X represents different functional substituents such as -H, -Cl, -Me, and -CHO at the para-position of the sulfonium moiety on a benzene ring, have been used for fine-tuning the optical bandgaps and adsorption properties of octamolybdate [Mo8O26]4- hybrids for photocatalytic dye degradation applications. The photodegradation of rhodamine B (RhB) is used as a model reaction, which follows pseudo-first-order kinetics exhibiting counterion-dependent degradation rate constants. The hybrid catalyst bearing a -CHO substituent on the ASC showed the lowest bandgap (2.91 eV) and the highest degradation rate constant (0.0141 min-1) of the series. A possible mechanism of photocatalytic dye degradation by hybrids involving the generation of reactive oxygen species (ROS) has been proposed, supported by radical scavenging studies. The intermediates formed during the photodegradation of RhB were analyzed and identified using electrospray ionization mass spectrometry (ESI-MS). The present study reveals a new strategy for tuning the photocatalytic properties of hybrids using differently functionalized ASCs and opens up new avenues for novel POM-hybrids as potential photocatalysts for environmental remediation applications.
Collapse
Affiliation(s)
- Mahender Singh
- School of Basic Science, Indian Institute of Technology Mandi, Mandi - 175005, Himachal Pradesh, India.
| | - Chullikkattil P Pradeep
- School of Basic Science, Indian Institute of Technology Mandi, Mandi - 175005, Himachal Pradesh, India.
| |
Collapse
|
38
|
Giri A, Biswas S, Hussain MW, Dutta TK, Patra A. Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7369-7381. [PMID: 35089681 DOI: 10.1021/acsami.1c24393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanostructured hypercrosslinked porous organic polymers have triggered immense research interest for a broad spectrum of applications ranging from catalysis to molecular separation. However, it still remains a challenge to tune their nanoscale morphology. Herein, we demonstrated a remarkable variation of morphologies of triptycene-based hypercrosslinked microporous polymers starting from irregular aggregates (FCTP) to rigid spheres (SCTP) to two-dimensional nanosheets (SKTP) from three distinct polymerization methodologies, Friedel-Crafts knitting using an external crosslinker, Scholl reaction, and solvent knitting, respectively. Further, the dramatic role of reaction temperatures, catalysts, and solvents resulting in well-defined morphologies was elucidated. Mechanistic investigations coupled with microscopic and computational studies revealed the evolution of 2D nanosheets of a highly porous solvent-knitted polymer (SKTP, 2385 m2 g-1), resulting from the sequential hierarchical self-assembly of nanospheres and nanoribbons. A structure-activity correlation of hypercrosslinked polymers and their sulfonated counterparts for the removal of toxic polar organic micropollutants from water was delineated based on the chemical functionalities, specific surface area, pore size distribution, dispersity, and nanoscale morphology. Furthermore, a sulfonated 2D sheet-like solvent-knitted polymer (SKTPS) exhibited rapid adsorption kinetics (within 30 s) for a large array of polar organic micropollutants, including plastic components, steroids, antibiotic drugs, herbicides, and pesticides with remarkable uptake capacity and excellent recyclability. The current study provides the impetus for designing morphology-controlled functionalized porous polymers for task-specific applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subha Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Md Waseem Hussain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Tapas Kumar Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
39
|
Zhang S, Dai F, Ke Z, Wang Q, Chen C, Qian G, Yu Y. A novel porous hollow carboxyl-polysulfone microsphere for selective removal of cationic dyes. CHEMOSPHERE 2022; 289:133205. [PMID: 34890624 DOI: 10.1016/j.chemosphere.2021.133205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.
Collapse
Affiliation(s)
- Shangying Zhang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Fengna Dai
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhao Ke
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Qi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Guangtao Qian
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Youhai Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
40
|
Baig N, Shetty S, Pasha SS, Pramanik SK, Alameddine B. Copolymer networks with contorted units and highly polar groups for ultra-fast selective cationic dye adsorption and iodine uptake. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Faraki Z, Bodaghifard MA. Synthesis and characterization of a highly functionalized cationic porous organic polymer as an efficient adsorbent for removal of hazardous nitrate and chromate ions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Efficient fluoride removal from water by amino Acid-enriched Artemia Cyst motivated Sub-10 nm La(OH)3 confined inside superporous skeleton. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Dutta S, Srivastava SK, Gupta B, Gupta AK. Hollow Polyaniline Microsphere/MnO 2/Fe 3O 4 Nanocomposites in Adsorptive Removal of Toxic Dyes from Contaminated Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54324-54338. [PMID: 34727690 DOI: 10.1021/acsami.1c15096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dyes are considered as recalcitrant compounds and are not easily removed through conventional water treatment processes. The present study demonstrated the fabrication of polyaniline hollow microsphere (PNHM)/MnO2/Fe3O4 composites by in situ deposition of MnO2 and Fe3O4 nanoparticles on the surface of PNHM. The physicochemical characteristics and adsorption behavior of the prepared PNHM/MnO2/Fe3O4 composites towards the removal of toxic methyl green (MG) and Congo red (CR) dyes have been investigated. The characterization study revealed the successful synthesis of the prepared PNHM/MnO2/Fe3O4 adsorbent with a high Brunauer-Emmett-Teller (BET) surface area of 191.79 m2/g. The batch adsorption study showed about 88 and 98% adsorption efficiencies for MG and CR dyes, respectively, at an optimum dose of 1 g/L of PNHM/MnO2/Fe3O4 at pH ∼6.75 at room temperature (303 ± 3 K). The adsorption phenomena of MG and CR dyes were well described by the Elovich and pseudo-second-order kinetics, respectively, and Freundlich isotherm model. The thermodynamics study shows that the adsorption reactions were endothermic and spontaneous in nature. The maximum adsorption capacity (Qmax) for MG and CR dyes was observed as 1142.13 and 599.49 mg/g, respectively. The responsible adsorption mechanisms involved in dye removal were electrostatic interaction, ion exchange, and the formation of the covalent bonds. The coexisting ion study revealed that the presence of phosphate co-ion considerably reduced the CR dye removal efficiency. However, the desorption-regeneration study demonstrated the successful reuse of the spent PNHM/MnO2/Fe3O4 material for the adsorption of MG and CR dyes for several cycles. Given the aforementioned findings, the PNHM/MnO2/Fe3O4 nanocomposites could be considered as a promising adsorbent for the remediation of dye-contaminated water.
Collapse
Affiliation(s)
- Soumi Dutta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
45
|
Diverse functional groups decorated, bifunctional polyesteramide as efficient Pb(II) electrochemical probe and methylene blue adsorbent. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
47
|
Gao W, Wei H, Wang CL, Liu JP, Zhang XM. Multifunctional Zn-Ln (Ln = Eu and Tb) heterometallic metal-organic frameworks with highly efficient I 2 capture, dye adsorption, luminescence sensing and white-light emission. Dalton Trans 2021; 50:11619-11630. [PMID: 34355718 DOI: 10.1039/d1dt01968f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new family of isostructural 3d-4f heterometallic metal-organic frameworks (HMOFs), [Zn3EuxTb2-x(TZI)4(DMA)5(H2O)3]·4DMA [x = 0 (1), 0.3 (2), 0.6 (3), 0.9 (4), 1 (5), 1.2 (6), 1.5 (7), 1.8 (8), 2 (9)], has been synthesized using the 5-(4-(tetrazol-5-yl) phenyl)isophthalic acid (H3TZI) ligand, LnIII ions and ZnII ions under solvothermal conditions. All HMOFs exhibit a (3,3,4,5,5)-connected 63·63(42·62·82)(4·65·8)(4·66·83) topology, which features three different types of motifs: one is a mononuclear ZnII ion and the other two motifs are binuclear [Zn(COO)3Ln] clusters. The adsorption experiments indicate that Zn3Tb2 (1) could efficiently remove almost all I2 from cyclohexane solution after 12 h and also showed better adsorption towards neutral red (NR) dye (adsorption: only the Zn3Tb2 (1) was taken as one representative). Simultaneously, the luminescence sensing showed that Zn3Tb2 (1) and Zn3Eu2 (9) have excellent response and sensitivity towards pollutants such as Fe3+ ions and 2,4,6-trinitrophenol (TNP) with high selectivity and a fairly low limit of detection through luminescence quenching effect. Moreover, seven trimetallic-doped HMOFs 2-8 analogues of Zn3Ln2 (single) HMOFs were designed and prepared, showing different changes of luminescent color. More interestingly, Zn3Eu1.5Tb0.5 (7) with white-light emission was fabricated by doping relative concentrations of Eu3+ and Tb3+ ions. To the best of our knowledge, Zn3Eu1.5Tb0.5 (7) represents a novel kind of heterometallic Zn3Ln2 HMOFs with white-light emission. It could be deduced that the excellent characteristics, namely strong typical luminescence emission of ZnII and LnIII ions, microporous channels, active open metal sites (tetra-coordinated ZnII-metal sites), and uncoordinated carboxylate O atoms and uncoordinated tetrazolate N atoms, made the above HMOFs an ideal platform for adsorption, luminescence sensing, and white-light emission. More significantly, these HMOFs are the first reported Zn-Ln heterometallic materials with the H3TZI ligand.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Normal University, Anhui 235000, China.
| | | | | | | | | |
Collapse
|
48
|
Wei Z, Chen Q, Liu H. Hydroxyl modified hypercrosslinked polymers: targeting high efficient adsorption separation towards aniline. NEW J CHEM 2021. [DOI: 10.1039/d1nj00914a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The removal of aniline from aqueous solution has a major environmental impact and attracted increasing attention in last few years.
Collapse
Affiliation(s)
- Zishuai Wei
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Qibin Chen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|