1
|
Chen S, Nguyen TD, Lee KZ, Liu D. Ex vivo T cell differentiation in adoptive immunotherapy manufacturing: Critical process parameters and analytical technologies. Biotechnol Adv 2024; 77:108434. [PMID: 39168355 DOI: 10.1016/j.biotechadv.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.
Collapse
Affiliation(s)
- Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Tan Dai Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Kang-Zheng Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore.
| |
Collapse
|
2
|
Zhou T, Gao Y, Wang Z, Dai C, Lei M, Liew A, Yan S, Yao Z, Hu D, Qi F. CD8 positive T-cells decrease neurogenesis and induce anxiety-like behaviour following hepatitis B vaccination. Brain Commun 2024; 6:fcae315. [PMID: 39386089 PMCID: PMC11462449 DOI: 10.1093/braincomms/fcae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Mounting evidence indicates the involvement of peripheral immunity in the regulation of brain function, influencing aspects such as neuronal development, emotion, and cognitive abilities. Previous studies from our laboratory have revealed that neonatal hepatitis B vaccination can downregulate hippocampal neurogenesis, synaptic plasticity and spatial learning memory. In the current post-epidemic era characterized by universal vaccination, understanding the impact of acquired immunity on neuronal function and neuropsychiatric disorders, along with exploring potential underlying mechanisms, becomes imperative. We employed hepatitis B vaccine-induced CD3 positive T cells in immunodeficient mice to investigate the key mechanisms through which T cell subsets modulate hippocampal neurogenesis and anxiety-like behaviours. Our data revealed that mice receiving hepatitis B vaccine-induced T cells exhibited heightened anxiety and decreased hippocampal cell proliferation compared to those receiving phosphate-buffered saline-T cells or wild-type mice. Importantly, these changes were predominantly mediated by infiltrated CD8+ T cells into the brain, rather than CD4+ T cells. Transcriptome profiling of CD8+ T cells unveiled that C-X-C motif chemokine receptor 6 positive (CXCR6+) CD8+ T cells were recruited into the brain through microglial and astrocyte-derived C-X-C motif chemokine ligand 16 (CXCL16). This recruitment process impaired neurogenesis and induced anxiety-like behaviour via tumour necrosis factor-α-dependent mechanisms. Our findings highlight the role of glial cell derived CXCL16 in mediating the recruitment of CXCR6+CD8+ T cell subsets into the brain. This mechanism represents a potential avenue for modulating hippocampal neurogenesis and emotion-related behaviours after hepatitis B vaccination.
Collapse
Affiliation(s)
- Tuo Zhou
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxuan Gao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiling Wang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunfang Dai
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Lei
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Aubrey Liew
- Department of Immunology, Mayo Clinic, Rochester 55905, USA
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 519070, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dandan Hu
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Fangfang Qi
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Department of Neurology, Mayo Clinic, Rochester 55905, USA
| |
Collapse
|
3
|
Burgstaller A, Piernitzki N, Küchler N, Koch M, Kister T, Eichler H, Kraus T, Schwarz EC, Dustin ML, Lautenschläger F, Staufer O. Soft Synthetic Cells with Mobile Membrane Ligands for Ex Vivo Expansion of Therapy-Relevant T Cell Phenotypes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401844. [PMID: 38751204 DOI: 10.1002/smll.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nils Piernitzki
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
4
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Yun HG, Cadierno YA, Kim TW, Muñoz-Barrutia A, Garica-Gonzalez D, Choi S. Computational Hyperspectral Microflow Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400019. [PMID: 38770741 DOI: 10.1002/smll.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Miniaturized flow cytometry has significant potential for portable applications, such as cell-based diagnostics and the monitoring of therapeutic cell manufacturing, however, the performance of current techniques is often limited by the inability to resolve spectrally-overlapping fluorescence labels. Here, the study presents a computational hyperspectral microflow cytometer (CHC) that enables accurate discrimination of spectrally-overlapping fluorophores labeling single cells. CHC employs a dispersive optical element and an optimization algorithm to detect the full fluorescence emission spectrum from flowing cells, with a high spectral resolution of ≈3 nm in the range from 450 to 650 nm. CHC also includes a dedicated microfluidic device that ensures in-focus imaging through viscoelastic sheathless focusing, thereby enhancing the accuracy and reliability of microflow cytometry analysis. The potential of CHC for analyzing T lymphocyte subpopulations and monitoring changes in cell composition during T cell expansion is demonstrated. Overall, CHC represents a major breakthrough in microflow cytometry and can facilitate its use for immune cell monitoring.
Collapse
Affiliation(s)
- Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoel Alonso Cadierno
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Tae Won Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Daniel Garica-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
6
|
Lizana-Vasquez GD, Mendez-Vega J, Cappabianca D, Saha K, Torres-Lugo M. In vitro encapsulation and expansion of T and CAR-T cells using 3D synthetic thermo-responsive matrices. RSC Adv 2024; 14:13734-13747. [PMID: 38681842 PMCID: PMC11046447 DOI: 10.1039/d4ra01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Suspension cell culture and rigid commercial substrates are the most common methods to clinically manufacture therapeutic CAR-T cells ex vivo. However, suspension culture and nano/micro-scale commercial substrates poorly mimic the microenvironment where T cells naturally develop, leading to profound impacts on cell proliferation and phenotype. To overcome this major challenge, macro-scale substrates can be used to emulate that environment with higher precision. This work employed a biocompatible thermo-responsive material with tailored mechanical properties as a potential synthetic macro-scale scaffold to support T cell encapsulation and culture. Cell viability, expansion, and phenotype changes were assessed to study the effect of two thermo-responsive hydrogel materials with stiffnesses of 0.5 and 17 kPa. Encapsulated Pan-T and CAR-T cells were able to grow and physically behave similar to the suspension control. Furthermore, matrix stiffness influenced T cell behavior. In the softer polymer, T cells had higher activation, differentiation, and maturation after encapsulation obtaining significant cell numbers. Even when terpolymer encapsulation affected the CAR-T cell viability and expansion, CAR T cells expressed favorable phenotypical profiles, which was supported with cytokines and lactate production. These results confirmed the biocompatibility of the thermo-responsive hydrogels and their feasibility as a promising 3D macro-scale scaffold for in vitro T cell expansion that could potentially be used for cell manufacturing process.
Collapse
Affiliation(s)
- Gaby D Lizana-Vasquez
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Janet Mendez-Vega
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Madeline Torres-Lugo
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| |
Collapse
|
7
|
Tzadka S, Ureña Martin C, Toledo E, Yassin AAK, Pandey A, Le Saux G, Porgador A, Schvartzman M. A Novel Approach for Colloidal Lithography: From Dry Particle Assembly to High-Throughput Nanofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17846-17856. [PMID: 38549366 DOI: 10.1021/acsami.3c18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 μm. We then demonstrated two nanotechnological applications of this approach. The first one is antireflective structures, fabricated on silicon and sapphire, with different geometries including arrays of bumps and holes and adjusted for different spectral ranges. The second one is smart 3D nanostructures for mechanostimulation of T cells that are used for their effective proliferation, with potential application in cancer immunotherapy. This new approach unleashes the potential of bottom-up nanofabrication and paves the way for nanoscale devices and systems in numerous applications.
Collapse
Affiliation(s)
- Sivan Tzadka
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Carlos Ureña Martin
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Abed Al Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ashish Pandey
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
10
|
Alatoom A, ElGindi M, Sapudom J, Teo JCM. The T Cell Journey: A Tour de Force. Adv Biol (Weinh) 2023; 7:e2200173. [PMID: 36190140 DOI: 10.1002/adbi.202200173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Indexed: 11/07/2022]
Abstract
T cells act as the puppeteers in the adaptive immune response, and their dysfunction leads to the initiation and progression of pathological conditions. During their lifetime, T cells experience myriad forces that modulate their effector functions. These forces are imposed by interacting cells, surrounding tissues, and shear forces from fluid movement. In this review, a journey with T cells is made, from their development to their unique characteristics, including the early studies that uncovered their mechanosensitivity. Then the studies pertaining to the responses of T cell activation to changes in antigen-presenting cells' physical properties, to their immediate surrounding extracellular matrix microenvironment, and flow conditions are highlighted. In addition, it is explored how pathological conditions like the tumor microenvironment can hinder T cells and allow cancer cells to escape elimination.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications Division of Engineering, New York University Abu Dhabi, Saadiyat Campus, P.O. Box 127788, Abu Dhabi, UAE.,Department of Mechanical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
11
|
Hansen SB, Højgaard LD, Kastrup J, Ekblond A, Follin B, Juhl M. Optimizing an immunomodulatory potency assay for Mesenchymal Stromal Cell. Front Immunol 2022; 13:1085312. [PMID: 36578497 PMCID: PMC9791065 DOI: 10.3389/fimmu.2022.1085312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
The expeditious progress of Mesenchymal Stromal Cells (MSC) for therapeutic intervention calls for means to compare differences in potency of cell products. The differences may be attributed to innumerable sources including tissue origin, production methods, or even between batches. While the immunomodulatory potential of MSC is recognized and well-documented by an expansive body of evidence, the methodologies and findings vary markedly. In this study, we utilized flowcytometric analysis of lymphocyte proliferation based on cryopreserved peripheral blood mononuclear cells for quantification of the inhibitory effect of MSC. Technical aspects of fluorescent staining and cryopreservation of peripheral blood mononuclear cells were evaluated to obtain optimal results and increase feasibility. A range of common specific and unspecific mitogens was titrated to identify the conditions, in which the effects of Adipose tissue-derived Stromal Cells (ASC; a type of MSC) were most pronounced. Specific stimulation by antibody-mediated activation of CD3 and CD28 via TransAct and Dynabeads lead to substantial proliferation of lymphocytes, which was inhibited by ASC. These results were closely mirrored when applying unspecific stimulation in form of phytohemagglutinin (PHA), but not concanavalin A or pokeweed mitogen. The mixed lymphocyte reaction is a common assay which exploits alloreactivity between donors. While arguably more physiologic, the output of the assay often varies substantially, and the extent of proliferation is limited since the frequency of alloreactive cells is low, as opposed to the mitogens. To heighten the proliferative response and robustness, combinations of 2-5 donors were tested. Maximum proliferation was observed when combining 4 or more donors, which was efficiently suppressed by ASC. Several desirable and unfavorable traits can be attributed to the tested stimuli in the form of keywords. The importance of these traits should be scored on a laboratory-level to identify the ideal mitogen. In our case the ranking listed PHA as the most suited candidate. Developing robust assays is no trivial feat. By disclosing the full methodological framework in the present study, we hope to aid others in establishing functional metrics on the road to potency assays.
Collapse
Affiliation(s)
- Stine Bangsgaard Hansen
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
- Cell2Cure, Birkerød, Denmark
| | - Annette Ekblond
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
- Cell2Cure, Birkerød, Denmark
| | - Bjarke Follin
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Juhl
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
13
|
Leveraging biomaterials for enhancing T cell immunotherapy. J Control Release 2022; 344:272-288. [PMID: 35217099 DOI: 10.1016/j.jconrel.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
The dynamic roles of T cells in the immune system to recognize and destroy the infected or mutated cells render T cell therapy a prospective treatment for a variety of diseases including cancer, autoimmune diseases, and allograft rejection. However, the clinical applications of T cell therapy remain unsatisfactory due to the tedious manufacturing process, off-target cytotoxicity, poor cell persistence, and associated adverse effects. To this end, various biomaterials have been introduced to enhance T cell therapy by facilitating proliferation, enhancing local enrichment, prolonging retention, and alleviating side effects. This review highlights the design strategies of biomaterials developed for T cell expansion, enrichment, and delivery as well as their corresponding therapeutic effects. The prospects of biomaterials for enhancing T cell immunotherapy are also discussed in this review.
Collapse
|
14
|
Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. J Control Release 2022; 343:379-391. [DOI: 10.1016/j.jconrel.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|
15
|
Van Zundert I, Bravo M, Deschaume O, Cybulski P, Bartic C, Hofkens J, Uji-i H, Fortuni B, Rocha S. Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics 2021; 13:2153. [PMID: 34959436 PMCID: PMC8703776 DOI: 10.3390/pharmaceutics13122153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
The application of antibodies in nanomedicine is now standard practice in research since it represents an innovative approach to deliver chemotherapy agents selectively to tumors. The variety of targets or markers that are overexpressed in different types of cancers results in a high demand for antibody conjugated-nanoparticles, which are versatile and easily customizable. Considering up-scaling, the synthesis of antibody-conjugated nanoparticles should be simple and highly reproducible. Here, we developed a facile coating strategy to produce antibody-conjugated nanoparticles using 'click chemistry' and further evaluated their selectivity towards cancer cells expressing different markers. Our approach was consistently repeated for the conjugation of antibodies against CD44 and EGFR, which are prominent cancer cell markers. The functionalized particles presented excellent cell specificity towards CD44 and EGFR overexpressing cells, respectively. Our results indicated that the developed coating method is reproducible, versatile, and non-toxic, and can be used for particle functionalization with different antibodies. This grafting strategy can be applied to a wide range of nanoparticles and will contribute to the development of future targeted drug delivery systems.
Collapse
Affiliation(s)
- Indra Van Zundert
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Maria Bravo
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Olivier Deschaume
- Soft-Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium; (O.D.); (C.B.)
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Carmen Bartic
- Soft-Matter Physics and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Box 2416, 3001 Heverlee, Belgium; (O.D.); (C.B.)
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Hiroshi Uji-i
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita Ward, Sapporo 001-0020, Japan
| | - Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; (I.V.Z.); (M.B.); (P.C.); (J.H.); (H.U.-i.)
| |
Collapse
|