1
|
Wu R, Lian S, He Y, Li Z, Feng W, Zhao Y, Yan H. Thiol-containing hyperbranched polysiloxane for scavenging reactive oxygen species. J Mater Chem B 2024; 12:10584-10592. [PMID: 39318226 DOI: 10.1039/d4tb01567c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Unconventional luminescent polymers have attracted considerable attention in the biological field due to their intrinsic fluorescence properties and excellent biocompatibility. However, exploring the luminescent properties of thiol-containing polymers and the mechanism of their scavenging of ROS remains unclear. In this work, we synthesised three kinds of hyperbranched polysiloxanes (HE, HP, and HB) with terminal thiol groups containing different chain lengths by the polycondensation reaction. Surprisingly, HP exhibits longer-wavelength emission at 480 nm with a quantum yield of 12.23% compared to HE and HB. Experiments and density functional theory (DFT) calculations have revealed that the rigidity of the conformation is enhanced by substantial hydrogen bonds and through-space O⋯O interactions in the polymer structure. These interactions, combined with the rigid carbon chains, balance the flexibility of the Si-O-C chain segments, which emerges as a critical factor contributing to the superior fluorescence performance of HP. In addition, HP exhibits excellent biocompatibility and ROS scavenging ability with a scavenging capacity of up to 35.095%. This work provides a new fluorescent polymer for scavenging ROS for the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sixian Lian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zheng Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yan Zhao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
2
|
Nigam KK, Tamrakar A, Pandey MD. L-Phenylalanine-derived pseudopeptidic bioinspired materials: Zn(II) induced fluorescence enhancement and precise tuning of self-assembled nanostructures. SOFT MATTER 2023; 19:7266-7270. [PMID: 37740379 DOI: 10.1039/d3sm00703k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The pseudopeptide, owing to its intriguing, sustainable, and easily accessible multifunctional properties, has attracted significant research interest over the years. C2-symmetric pseudopeptidic chiral bioinspired materials have been developed for their selective sensitivity to Zn(II) ions via a turn-on fluorescence under physiological conditions. Moreover, these are promising soft materials for precisely tuning their self-assembled nanostructures after incubating with Zn(II), opening avenues for exploring similar effects in various peptidomimetics.
Collapse
Affiliation(s)
- Kamlesh Kumar Nigam
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
3
|
Zhuang F, Xiang H, Huang B, Chen Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303158. [PMID: 37222084 DOI: 10.1002/adma.202303158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Ultrasound (US)-triggered cascade amplification of nanotherapies has attracted considerable attention as an effective strategy for cancer treatment. With the remarkable advances in materials chemistry and nanotechnology, a large number of well-designed nanosystems have emerged that incorporate presupposed cascade amplification processes and can be activated to trigger therapies such as chemotherapy, immunotherapy, and ferroptosis, under exogenous US stimulation or specific substances generated by US actuation, to maximize antitumor efficacy and minimize detrimental effects. Therefore, summarizing the corresponding nanotherapies and applications based on US-triggered cascade amplification is essential. This review comprehensively summarizes and highlights the recent advances in the design of intelligent modalities, consisting of unique components, distinctive properties, and specific cascade processes. These ingenious strategies confer unparalleled potential to nanotherapies based on ultrasound-triggered cascade amplification and provide superior controllability, thus overcoming the unmet requirements of precision medicine and personalized treatment. Finally, the challenges and prospects of this emerging strategy are discussed and it is expected to encourage more innovative ideas and promote their further development.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Ma Y, Wu M, Qin X, Dong Q, Li Z. Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: A review. Food Microbiol 2023; 112:104242. [PMID: 36906324 DOI: 10.1016/j.fm.2023.104242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Contaminations of pathogenic and spoilage microbes on foods are threatening food safety and quality, highlighting the importance of developing antimicrobial agents. According to different working mechanisms, the antimicrobial activities of yeast-based agents were summarized from two aspects: antagonism and encapsulation. Antagonistic yeasts are usually applied as biocontrol agents for the preservation of fruits and vegetables via inactivating spoilage microbes, usually phytopathogens. This review systematically summarized various species of antagonistic yeasts, potential combinations to improve the antimicrobial efficiency, and the antagonistic mechanisms. The wide applications of the antagonistic yeasts are significantly limited by undesirable antimicrobial efficiency, poor environmental resistance, and a narrow antimicrobial spectrum. Another strategy for achieving effective antimicrobial activity is to encapsulate various chemical antimicrobial agents into a yeast-based carrier that has been previously inactivated. This is accomplished by immersing the dead yeast cells with porous structure in an antimicrobial suspension and applying high vacuum pressure to allow the agents to diffuse inside the yeast cells. Typical antimicrobial agents encapsulated in the yeast carriers have been reviewed, including chlorine-based biocides, antimicrobial essential oils, and photosensitizers. Benefiting from the existence of the inactive yeast carrier, the antimicrobial efficiencies and functional durability of the encapsulated antimicrobial agents, such as chlorine-based agents, essential oils, and photosensitizers, are significantly improved compared with the unencapsulated ones.
Collapse
Affiliation(s)
- Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Mengjie Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| |
Collapse
|
5
|
Huang J, Zhao Q, Zhang H, Liu HB, Wang J. Fluorescence ''turn-on'' probe for the selective detection of water in organic solvents based on functionalized mesoporous silica. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122099. [PMID: 36375288 DOI: 10.1016/j.saa.2022.122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
A fluorescence ''turn-on'' probe, namely, TTA-SBA-15, for the selective detection of water (H2O) was designed by grafting terthiophene fluorophore onto ethylenediamine functionalized mesoporous SBA-15 silica. The maximum fluorescence emission peak of TTA-SBA-15 ranged from 462 nm (toluene) to 525 nm (methanol) in various organic solvents. No fluorescence was observed in H2O due to the donor-excited photoinduced electron transfer mechanism, in which terthiophene acted as the donor and the amino group acted as the acceptor. Upon adding trace amounts of H2O into the TTA-SBA-15 suspensions dispersed in various organic solvents, TTA-SBA-15 was successfully applied as a ''turn-on'' fluorescent probe for the quantitative determination of trace H2O in organic solvents with high sensitivity and low detection limit. To demonstrate the selective detection mechanism of TTA-SBA-15 for H2O, the fluorescent spectra of two control materials (TT-SBA-15 and PyA-SBA-15) were also investigated in H2O and various organic solvents. The experimental results indicated that the terthiophene fluorophore and amine functional group on TTA-SBA-15 contributed to the H2O selectivity, highlighting the structure-activity relationships in developing organic functionalized mesoporous silica for potential applications.
Collapse
Affiliation(s)
- Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Raichure PC, Kachwal V, Sengottuvelu D, Laskar IR. Achieving Single-Component Solid-State White-Light Emission through Polymerization-Induced Phosphorescent Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Pramod C. Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Dineshkumar Sengottuvelu
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Center for Graphene Research and Innovation, C06 Jackson Avenue Center, University of Mississippi, University, Mississippi 38677, United States
| | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
7
|
Zhang Y, Wu J, Gao J, Chen X, Wang Q, Yu X, Zhang Z, Liu M, Li J. Oxygen ether chain containing covalent organic frameworks as efficient fluorescence-enhanced probe for water detection. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Amphiphilic benzothiadiazole derivatives: synthesis, self-assembly and applications as light-emitting liquid crystal display and switchable anisotropic scattering device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐Aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022; 61:e202208349. [DOI: 10.1002/anie.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shujian Rong
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300387 China
| | - Simin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Sun XM, Liu J, Li ZH, Fu YP, Huang TT, Tang ZD, Shi B, Yao H, Wei TB, Lin Q. Structure-property relationship on aggregation-induced emission properties of simple azine-based AIEgens and its application in metal ions detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shujian Rong
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Wenxiong Shi
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Simin Zhang
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Xun Wang
- Tsinghua University Department of Chemistry Haidian District, Chengfu Road 100084 Beijing CHINA
| |
Collapse
|
12
|
Hu R, Wang J, Qin A, Tang BZ. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:2185-2196. [PMID: 35171563 DOI: 10.1021/acs.biomac.1c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Raichure PC, Bhatt R, Kachwal V, Sharma TC, Laskar IR. Multi-stimuli distinct responsive D–A based fluorogen oligomeric tool and efficient detection of TNT vapor. NEW J CHEM 2022. [DOI: 10.1039/d1nj05314k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
P1 shows distinct emission responses with multi-stimuli, i.e., quenching for TNT sensing, red shifting for acid and base vapors, blue shifting against MFC behavior, and solvent polarity-dependent emission.
Collapse
Affiliation(s)
- Pramod C. Raichure
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Ramprasad Bhatt
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vishal Kachwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | | | - Inamur Rahaman Laskar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
14
|
Wang S, Ma L, Wang S, Wang Y, Liu G, Wang H. White light-induced AIEgen polyurethane films containing Schiff base copper( ii) complexes for synergistic chemo/photodynamic antibacterial therapy. Polym Chem 2022. [DOI: 10.1039/d2py00061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurethane films containing AIEgens and copper complexes can act as a potential antibacterial agent for multi-mode combined antibacterial therapy.
Collapse
Affiliation(s)
- Shiyu Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Yazhou Wang
- Sinopec, Shengli Oilfield, Chunliang Oil Prod Plant, Dongying 256600, Shangdong, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
15
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
16
|
Qin YY, Wang QY, Ge JL, Wu F. Microwave ultrasound-assisted synthesis of NH2-MIL-53(Al) for fluorescence detection of organosulfur compounds in model fuel. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|