1
|
Liu YC, Zhu CY, Zhao X, Tan HQ, Cheng SH, Yang D, Wang X, Li YG. CdWO 4 Sub-1 nm Nanowires for Visible-Light CO 2 Photoreduction. Angew Chem Int Ed Engl 2024:e202418349. [PMID: 39373128 DOI: 10.1002/anie.202418349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
Quantum size effect usually causes energy level splitting and band broadening as material size decreases. However, this may change again by the surface adsorbents, doping and defects, which rarely attracts much attention. Herein, CdWO4 sub-1 nm nanowires (SNWs) with oleylamine adsorption, PO4 3--doping and oxygen defects are synthesized by combining Cd(CH3COO)2, H3PW12O40 (PW12) and oleylamine (abbreviated as PO4 3--CdWO4-X SNWs). Compared with bulk CdWO4, they exhibit unexpected absorption spectra (extended from 292 nm to 453 nm) and band gap (reduced from 4.25 eV to 2.74 eV), thus bringing remarkable visible-light CO2 photoreduction activity. Under 410 nm LED light irradiation, PO4 3--CdWO4-40 SNWs exhibit the highest photocatalytic performance with a CO2-to-CO generation rate of 1685 μmol g-1 h-1. Density functional theory (DFT) calculations demonstrate the adsorbed oleylamine raises the valence band and enhances the adsorption of reaction substrate and intermediates, thus decreasing their reduction energy barriers. Furthermore, PO4 3--doping and oxygen defects will generate defect energy band below the conduction band of PO4 3--CdWO4-40 SNWs, resulting in remarkable visible light absorption and superior photocatalytic CO2 reduction performance. This work highlights the significant impacts of surface adsorbents, doping and defects on the physicochemical and catalytic properties of sub-nano materials.
Collapse
Affiliation(s)
- Yan-Chun Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Chang-Yan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Si-Hang Cheng
- School of Chemical and Materials Engineering, Bohai University, Jinzhou, 121000, China
| | - Dan Yang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
2
|
Han R, Wang K, Jiang Q, Zhang G, Lu Q, Guo E. 0D/1D CuWO 4/Mn 0.3Cd 0.7S S-scheme heterojunctions for full-spectrum bifunctional photocatalytic degradation and hydrogen production. J Colloid Interface Sci 2024; 671:680-691. [PMID: 38823109 DOI: 10.1016/j.jcis.2024.05.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Integrating photocatalytic oxidation for pollutant removal with hydrogen production via photocatalysis presents a promising approach for sustainable water purification and renewable energy generation, circumventing the sluggish multi-electron transfer inherent in photocatalytic water oxidation. This study introduces novel zero-/one-dimensional (0D/1D) CuWO4/Mn0.3Cd0.7S step-scheme (S-scheme) heterojunctions that exhibit exceptional bifunctional capabilities in photocatalytic degradation and hydrogen production under full-spectrum illumination. The degradation efficiency for tetracycline (TC) using 5 %-CuWO4/Mn0.3Cd0.7S reaches 94.3 % and 94.5 % within 60 min and 6 h, respectively, under ultraviolet-visible (UV-Vis) and near-infrared (NIR) light. Notably, these 0D/1D CuWO4/Mn0.3Cd0.7S S-scheme heterojunctions demonstrate superior hydrogen production, achieving rates of 12442.03 μL g-1h-1 and 2418.54 μL g-1h-1 under UV-Vis light and NIR light irradiation, respectively-these rates are 2.3 times and 55.2 times higher than that of Mn0.3Cd0.7S alone. This performance enhancement is attributed to the intrinsic dimensional effects, transitions of transition metal d-d orbitals, and S-scheme hole/electron (h+/e-) separation characteristics. Additionally, experimental results and density functional theory (DFT) calculations have clarified the modulation of electronic configurations, band alignment, and interfacial interactions via 0D/1D S-scheme heterojunction engineering. This study sheds light on the electron transfer mechanism within S-scheme heterojunction and enhances the effectiveness, economy, and sustainability of recalcitrant pollutant removal and hydrogen production.
Collapse
Affiliation(s)
- Ruoting Han
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Ke Wang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qichuan Jiang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Guangxuan Zhang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Enyan Guo
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
3
|
Qiu Y, Huang M, Sun X, Wang Y, Deng K, Liu Z, Xie Y, Zhao P, Fei J. In-situ synthesized MgIn 2S 4/CdWO 4 type-II heterojunction as a light-driven photoelectrochemical sensor for ultrasensitive detection of catechol in environmental water samples. Talanta 2024; 276:126206. [PMID: 38749163 DOI: 10.1016/j.talanta.2024.126206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 μM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.
Collapse
Affiliation(s)
- Yuhui Qiu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Minghui Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaoqian Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Kunxiang Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
4
|
Han R, Zhang X, Shang Z, Chen S, Lu Q, Guo E, Han X, Zhang G, Li Z. Efficient wide-spectrum one-dimensional MWO 4 (M = Mn, Co, and Cd) photocatalysts: Synthesis, characterization and density functional theory study. J Colloid Interface Sci 2024; 662:822-835. [PMID: 38382367 DOI: 10.1016/j.jcis.2024.02.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/05/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Broadening the absorption region to near-infrared (NIR) light is critical for the photocatalysis due to the larger proportion and stronger penetration of NIR light in solar energy. In the present paper, one-dimensional (1D) MWO4 (M = Mn, Co, and Cd) materials synthesized by electrospinning technique, were studied by combining the density functional theory (DFT) with experiment results, which possessed the enhanced light absorption capability within the range of 200-2000 nm. It was proved that in the ultraviolet-visible (UV-Vis) region, the absorption bands of CoWO4 and MnWO4 samples were attributed to the metal-to-metal charge transfer mechanism, while the absorption of CdWO4 sample may be referable to the ligand-to-metal charge transfer mechanism. In the near-infrared (NIR) region, the absorption of CoWO4 and MnWO4 primarily originated from the d-d orbital transitions of Mn2+ and Co2+. The photocatalytic experimental results showed that the degradation rates for bisphenol A (BPA) over CoWO4, MnWO4, and CdWO4 photocatalysts under UV-Vis/NIR light irradiation for 140 min/12 h were 78.8 %/75.9 %, 23.8 %/21.3 %, 12.8 %/8.7 %, respectively. This research offers the novel insights into the precise construction of tungstate catalytic systems and contributes to the advancement of UV-Vis-NIR full spectrum photocatalytic technology, and lays a foundation for a cleaner and more environmental-friendly future.
Collapse
Affiliation(s)
- Ruoting Han
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xingyu Zhang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhihui Shang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shunwei Chen
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Enyan Guo
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Xiujun Han
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Guangxuan Zhang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
5
|
Tang L, Wang D, Sun S, Cheng Q, Zhang L, Xia W, Zheng J, Cui J, Wang Y, Zhou H. Fiber-in-Tube Electrifiable Structure for Virus Filtration Self-Generated Static Electricity by Vibration/Sound. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38701174 DOI: 10.1021/acsami.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Fiber has been considered as an ideal material for virus insulation due to the readily available electrostatic adsorption. However, restricted by the electrostatic attenuation and filtration performance decline, their long-lasting applications are unable to satisfy the requirements of medical protective equipment for major medical and health emergencies such as global epidemics, which results in both a waste of resources and environmental pollution. We overcame these issues by constructing a fiber-in-tube structure, achieving the robust reusability of fibrous membranes. Core fibers within the hollow could form generators with tube walls of shell fibers to provide persistent, renewable static electricity via piezoelectricity and triboelectricity. The PM0.3 insulation efficiency achieved 98% even after 72 h of humidity and heat aging, through beating and acoustic waves, which is greatly improved compared with that of traditional nonwoven fabric (∼10% insulation). A mask spun with our fiber also has a low breathing resistance (differential pressure <24.4 Pa/cm2). We offer an approach to enrich multifunctional fiber for developing electrifiable filters, which make the fiber-in-tube filtration membrane able to durably maintain a higher level of protective performance to reduce the replacement and provide a new train of thought for the preparation of other high-performance protective products.
Collapse
Affiliation(s)
- Lianwei Tang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qikuang Cheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weibang Xia
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zheng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingqiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, TuoRen Medical Device Research & Development Institute Co., Ltd., Health Technology Industry Park, Changyuan County, Henan 453000, PR China
| | - Yunming Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Balu S, Ganapathy D, Arya S, Atchudan R, Sundramoorthy AK. Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production - a review. RSC Adv 2024; 14:14392-14424. [PMID: 38699688 PMCID: PMC11064126 DOI: 10.1039/d4ra01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
The use of pharmaceuticals, dyes, and pesticides in modern healthcare and agriculture, along with expanding industrialization, heavily contaminates aquatic environments. This leads to severe carcinogenic implications and critical health issues in living organisms. The photocatalytic methods provide an eco-friendly solution to mitigate the energy crisis and environmental pollution. Sunlight-driven photocatalytic wastewater treatment contributes to hydrogen production and valuable product generation. The removal of contaminants from wastewater through photocatalysis is a highly efficient method for enhancing the ecosystem and plays a crucial role in the dual-functional photocatalysis process. In this review, a wide range of catalysts are discussed, including heterojunction photocatalysts and various hybrid semiconductor photocatalysts like metal oxides, semiconductor adsorbents, and dual semiconductor photocatalysts, which are crucial in this dual function of degradation and green fuel production. The effects of micropollutants in the ecosystem, degradation efficacy of multi-component photocatalysts such as single-component, two-component, three-component, and four-component photocatalysts were discussed. Dual-functional photocatalysis stands out as an energy-efficient and cost-effective method. We have explored the challenges and difficulties associated with dual-functional photocatalysts. Multicomponent photocatalysts demonstrate superior efficiency in degrading pollutants and producing hydrogen compared to their single-component counterparts. Dual-functional photocatalysts, incorporating TiO2, g-C3N4, CeO2, metal organic frameworks (MOFs), layered double hydroxides (LDHs), and carbon quantum dots (CQDs)-based composites, exhibit remarkable performance. The future of synergistic photocatalysis envisions large-scale production facilitate integrating advanced 2D and 3D semiconductor photocatalysts, presenting a promising avenue for sustainable and efficient pollutant degradation and hydrogen production from environmental remediation technologies.
Collapse
Affiliation(s)
- Surendar Balu
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| | - Sandeep Arya
- Department of Physics, University of Jammu 180006 Jammu Jammu and Kashmir India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University 38541 Gyeongsan Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Centre for Nano-Biosensors, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai 600077 Tamil Nadu India
| |
Collapse
|
7
|
Tan L, Yue S, Lou Y, Zhu JJ. Enhancing charge transfer in a W 18O 49/g-C 3N 4 heterostructure via band structure engineering for effective SERS detection and flexible substrate applications. Analyst 2023; 149:180-187. [PMID: 38009267 DOI: 10.1039/d3an01690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Chemical mechanism (CM)-related surface-enhanced Raman spectroscopy (SERS) has received tremendous interest due to its exceptional stability and excellent uniformity. Nevertheless, there remains a demand for ingenious methodologies for promoting effective charge transfer (CT) to improve SERS sensitivity further. Herein, a band structure engineered W18O49/g-C3N4 heterostructure (WCN) was first employed as a CM-based SERS substrate with remarkable enhancement and sensitivity. To investigate the Raman enhancement properties of the substrate, malachite green (MG) was employed as the Raman probe with the excitation of a 633 nm laser. The WCN substrate exhibits a Raman enhancement factor (EF) of 2.6 × 107, achieving a limit of detection (LOD) of 1.9 × 10-10 M for MG. The outstanding Raman amplification behavior can be attributed to the heterojunction-induced efficient CT process, energy band matching resonance due to minor doping with g-C3N4 serving as a band gap modifier, and improved photo-induced charge transfer (PICT) efficiency via the oxygen vacancies in the W18O49 units. Additionally, a flexible SERS substrate based on WCN was constructed using a vacuum filtration method and utilized to detect prohibited pharmaceutical residues on fish skin. The integration of this WCN and a nylon membrane not only preserves the Raman activity of the WCN for sensitive detection but also endows the Raman substrate with high flexibility and good mechanical durability, making it a potential candidate for in situ detection in particular environments.
Collapse
Affiliation(s)
- Lu Tan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
8
|
Yuju S, Xiujuan T, Dongsheng S, Zhiruo Z, Meizhen W. A review of tungsten trioxide (WO 3)-based materials for antibiotics removal via photocatalysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114988. [PMID: 37182300 DOI: 10.1016/j.ecoenv.2023.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Antibiotics are extensively used in human medicine and animal breeding. The use of antibiotics has posed significant risks and challenges to the natural water environment. On a global scale, antibiotics have been frequently detected in the environment, azithromycin (254-529 ng·L-1), ciprofloxacin (245-1149 ng·L-1), ofloxacin (518-1998 ng·L-1), sulfamethoxazole (1325-5053 ng·L-1), and tetracycline (31.4-561 ng·L-1) are the most detected antibiotics in wastewater and surface water. Abuses of antibiotics has caused a significant threat to water resources and has seriously threatened the survival of human beings. Therefore, there is an urgent need to reduce antibiotic pollution and improve the environment. Researchers have been trying to develop effective methods and technologies for antibiotic degradation in water. Finding efficient and energy-saving methods for treating water pollutants has become an important global topic. Photocatalytic technology can effectively remove highly toxic, low-concentration, and difficult-to-treat pollutants, and tungsten trioxide (WO3) is an extremely potential alternative catalyst. Pt/WO3 photocatalytic degradation efficiency of tetracycline was 72.82%, While Cu-WO3 photocatalytic degradation efficiency of tetracycline was 96.8%; WO3/g-C3N4 photocatalytic degradation efficiency of ceftiofur was 70%, WO3/W photocatalytic degradation efficiency of florfenicol was 99.7%; WO3/CdWO4 photocatalytic degradation efficiency of ciprofloxacin was 93.4%; WO3/Ag photocatalytic degradation efficiency of sulfanilamide was 96.2%. Compared to other water purification methods, photocatalytic technology is non-toxic and ensures complete degradation through a stable reaction process, making it an ideal water treatment method. Here, we summarize the performance and corresponding principles of tungsten trioxide-based materials as a photocatalytic catalyst and provide substantial insight for further improving the photocatalytic potential of WO3-based materials.
Collapse
Affiliation(s)
- Shan Yuju
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Tang Xiujuan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Shen Dongsheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Zhou Zhiruo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| | - Wang Meizhen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
9
|
Preetha R, Govinda Raj M, Vijayakumar E, Narendran MG, Neppolian B, Bosco AJ. "Quasi-In Situ Synthesis of Oxygen Vacancy-Enriched Strontium Iron Oxide Supported on Boron-Doped Reduced Graphene Oxide to Elevate the Photocatalytic Destruction of Tetracycline". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7091-7108. [PMID: 37163322 DOI: 10.1021/acs.langmuir.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The efficient use of visible light is necessary to take advantage of photocatalytic processes in both indoor and outdoor circumstances. Precisely manipulating the in situ growth method of heterojunctions is an effective way to promote photogenerated charge separation. Herein, the SrFeO3@B-rGO catalyst was prepared by an in situ growth method. At a loading of 10 wt % B-rGO, the nanocomposites revealed an excellent morphology and thermal, optical, electrochemical, and mechanical properties. X-ray diffraction analysis revealed the cubic spinel structure and a space group of Pm̅3m for SrFeO3. High-resolution scanning electron microscopy and high-resolution transmission electron microscopy show the core-shell formation between SrFeO3 and B-rGO. Furthermore, density functional theory of SrFeO3 was performed to find its band structure and density of states. The SrFeO3@B-rGO nanocomposite shows the degradation rate of tetracycline (TC) reaching 92% in 75 min and the highest rate constant of 0.0211 min-1. To improve the catalytic removal rate of antibiotics, the efficiency of e- and h + separation must be improved, as well as the generation of additional radicals. Radical trapping tests and the electron paramagnetic resonance method indicated that the combination of Fe2+ and Fe3+ in SrFeO3 effectively separated e- and h+ while also promoting the development of the superoxide anion (•O2-) to accelerate TC degradation. The entire TC degradation pathway using high-performance liquid chromatography and its mechanism were discussed. As a whole, this study delineates that photocatalysis is a viable strategy for the treatment of environmental antibiotic wastewater.
Collapse
Affiliation(s)
- Rajaraman Preetha
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203 Tamil Nadu, India
| | - Muniyandi Govinda Raj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203 Tamil Nadu, India
| | - Elayaperumal Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203 Tamil Nadu, India
| | | | - Bernaurdshaw Neppolian
- Energy and Environmental Remediation Lab, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203 Tamil Nadu, India
| | - Aruljothy John Bosco
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203 Tamil Nadu, India
| |
Collapse
|
10
|
Chen B, Zhang L, Luo H, Huang L, He P, Xue G, Liang H, Dai W. Oxidative Cleavage and Ammoxidation of Unsaturated Hydrocarbons via Heterogeneous Auto-Tandem Catalysis. JACS AU 2023; 3:476-487. [PMID: 36873692 PMCID: PMC9975833 DOI: 10.1021/jacsau.2c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/31/2023]
Abstract
The oxidative cleavage and functionalization of unsaturated C-C bonds are important processes for synthesis of carbonyl compounds from hydrocarbon feedstocks, yet there has been no report of direct amidation of unsaturated hydrocarbons via an oxidative cleavage of unsaturated C-C bonds with molecular oxygen as an environmentally benign oxidant. Herein, for the first time, we describe a manganese oxide-catalyzed auto-tandem catalysis strategy that enables direct synthesis of amides from unsaturated hydrocarbons by coupling oxidative cleavage with amidation. With oxygen as an oxidant and ammonia as a nitrogen source, a wide range of structurally diverse mono- and multisubstituted activated and unactivated alkenes or alkynes can smoothly undergo unsaturated C-C bond cleavage to deliver one- or multiple-carbon shorter amides. Moreover, a slight modification of the reaction conditions also allows for the direct synthesis of sterically hindered nitriles from alkenes or alkynes. This protocol features excellent functional group tolerance, a broad substrate scope, flexible late-stage functionalization, facile scalability, and a cost-effective and recyclable catalyst. Detailed characterizations reveal that the high activity and selectivity of the manganese oxides are attributed to the large specific surface area, abundant oxygen vacancies, better reducibility, and moderate acid sites. Mechanistic studies and density functional theory calculations indicate that the reaction proceeds through divergent pathways depending on the structure of substrates.
Collapse
Affiliation(s)
- Bo Chen
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Lei Zhang
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Huihui Luo
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Liang Huang
- The
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Peipei He
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Gaijun Xue
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Hongliang Liang
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| | - Wen Dai
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Leelavathi H, Muralidharan R, Abirami N, Arulmozhi R. Development of Z-scheme bimetallic tungstate-supported nitrogen deficient g-C 3N 4 heterojunction for the treatment of refractory pharmaceutical pollutants. NEW J CHEM 2023. [DOI: 10.1039/d3nj00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The binary BMT/ND-GCN-based heterostructure photocatalyst for pharmaceutical industry wastewater treatment.
Collapse
Affiliation(s)
- H. Leelavathi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu-603 203, Tamil Nadu, India
| | - R. Muralidharan
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai-602 105, Tamil Nadu, India
| | - N. Abirami
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu-603 203, Tamil Nadu, India
| | - R. Arulmozhi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu-603 203, Tamil Nadu, India
| |
Collapse
|
12
|
Althabaiti SA, Malik MA, Kumar Khanna M, Bawaked SM, Narasimharao K, Al-Sheheri SZ, Fatima B, Siddiqui SI. One-Pot Facile Synthesis of CuO-CdWO 4 Nanocomposite for Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4472. [PMID: 36558324 PMCID: PMC9782073 DOI: 10.3390/nano12244472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen (H2) is a well-known renewable energy source that produces water upon its burning, leaving no harmful emissions. Nanotechnology is utilized to increase hydrogen production using sacrificial reagents. It is an interesting task to develop photocatalysts that are effective, reliable, and affordable for producing H2 from methanol and acetic acid. In the present study, CuO, CdWO4, and CuO-CdWO4 nanocomposite heterostructures were prepared using a cost-efficient, enviro-friendly, and facile green chemistry-based approach. The prepared CuO, CdWO4, and CuO-CdWO4 nanocomposites were characterized using X-ray diffraction pattern, Fourier-transform infrared spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction (SAED) pattern, N2 physisorption, photoluminescence, and X-ray photoelectron spectroscopy techniques. The synthesized photocatalysts were utilized for photocatalytic H2 production using aqueous methanol and acetic acid as the sacrificial reagents under visible light irradiation. The influence of different variables, including visible light irradiation time, catalyst dosage, concentration of sacrificial reagents, and reusability of catalysts, was studied. The maximum H2 was observed while using methanol as a sacrificial agent over CuO-CdWO4 nanocomposite. This enhancement was due to the faster charge separation, higher visible light absorption, and synergistic effect between the CuO-CdWO4 nanocomposite and methanol.
Collapse
Affiliation(s)
- Shaeel Ahmed Althabaiti
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Manoj Kumar Khanna
- Department of Physics, Ramjas College, University of Delhi, Delhi 110007, India
| | - Salem Mohamed Bawaked
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Katabathini Narasimharao
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Soad Zahir Al-Sheheri
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bushra Fatima
- Department of Chemistry, Jamia Millia Islamia, Delhi 110025, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Delhi 110025, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Asgari S, Mohammadi Ziarani G, Badiei A, Ajalloueian F, Vasseghian Y. Electrospun composite nanofibers as novel high-performance and visible-light photocatalysts for removal of environmental pollutants: A review. ENVIRONMENTAL RESEARCH 2022; 215:114296. [PMID: 36116501 DOI: 10.1016/j.envres.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants. The polymeric and non-polymeric-based electrospun composite nanofibers (NFs) are as innovative photocatalytic candidates which increase photocatalytic activity and transition from UV light to visible light and overcome the aggregation, photocorrosion, toxicity, and hard recycling and separation of the nanosized powder form of photocatalysts. The composite NFs are fabricated easily by either embedding the photocatalytic agents into the NFs during electrospinning or via their decorating on the surface of NFs post-electrospinning. Polyacrylonitrile-based, tungsten trioxide-based, zinc oxide-based, and titanium dioxide-based composite NFs were revealed as the most reported composite NFs. All the lately investigated electrospun composite NFs indicated long-term stability, high photocatalytic efficiency (∼> 80%) within a short time of light radiation (10-430 min), and high stability after several cycles of use. They were applied in various applications including degradation of dyes/antibiotics, water splitting, wastewater treatment, antibacterial usage, etc. The photogenerated species especially holes, O2∙-, and .OH were mostly responsible for the photocatalytic mechanism and pathway. The electrospun composite NFs have the potential to use in large-scale productions in condition that their thickness and recycling conditions are optimized, and their toxicity and detaching are resolved.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Ajalloueian
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs, Lyngby, Denmark
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
14
|
Li Y, Zou Z, An J, Wu Q, Tong L, Mei X, Tian H, Wu C. Chitosan-modified hollow manganese dioxide nanoparticles loaded with resveratrol for the treatment of spinal cord injury. Drug Deliv 2022; 29:2498-2512. [PMID: 35903814 PMCID: PMC9477490 DOI: 10.1080/10717544.2022.2104957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease, and secondary injury, including oxidative stress, the inflammatory response and accompanying neuronal apoptosis, will aggravate the condition. Due to the existence of the blood–spinal cord barrier (BSCB), the existing drugs for SCI treatment are difficulty to reach the injury site and thus their efficacy is limited. In this study, we designed chitosan-modified hollow manganese dioxide nanoparticles (CM) for the delivery of resveratrol to help it pass through the BSCB. Resveratrol (Res), a poorly soluble drug, was adsorbed into CM with a particle size of approximately 130 nm via the adsorption method, and the drug loading reached 21.39 ± 2.53%. In vitro dissolution experiment, the Res release of the loaded sample (CMR) showed slowly release behavior and reached about 87% at 36 h. In vitro at the cellular level and in vivo at the animal level experiments demonstrated that CMR could alleviate significantly oxidative stress by reducing level of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and increasing glutathione peroxidase (GSH) level. Additionally, immunofluorescence (iNOS, IL-1β, and Cl caspase-3) and western blot (iNOS, cox-2, IL-1β, IL-10, Cl caspase-3, bax, and bcl-2) were used to detect the expression of related factors, which verified that CMR could also reduce inflammation and neuronal apoptosis. These results indicated that CM, as a potential central nervous system drug delivery material, was suitable for SCI treatment.
Collapse
Affiliation(s)
- Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
15
|
Bisht K, Kumar G, Dutta RK. Amine-Functionalized Crystalline Carbon Nanodots Decorated on Bi 2WO 6 Nanoplates as Solar Photocatalysts for Efficient Degradation of Tetracycline and Ciprofloxacin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishanan Bisht
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Gandharve Kumar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Raj Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| |
Collapse
|
16
|
Facile synthesis of CaWO4 nanoparticles incorporated on porous carbons with improved photocatalytic degradation of tetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|
18
|
Bahadoran A, Ramakrishna S, Masudy-Panah S, De Lile JR, Gu J, Liu Q, Mishra YK. Rational Construction of a 0D/1D S-Scheme CeO 2/CdWO 4 Heterojunction for Photocatalytic CO 2 Reduction and H 2 Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574 Singapore
| | - Saeid Masudy-Panah
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART) Centre, 38602 Singapore
| | - Jeffrey Roshan De Lile
- Département de physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - JiaJun Gu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yogendra Kumar Mishra
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
19
|
Yang H, Dai K, Zhang J, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem Rev 2022; 122:13478-13515. [PMID: 35862246 DOI: 10.1021/acs.chemrev.2c00061] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels, reducing the impact of global warming, and providing solutions to environmental pollution. Improved processes for catalyst design and a better understanding of electro/photocatalytic processes are essential for improving catalyst effectiveness. Recent advances in data science and artificial intelligence have great potential to accelerate electrocatalysis and photocatalysis research, particularly the rapid exploration of large materials chemistry spaces through machine learning. Here a comprehensive introduction to, and critical review of, machine learning techniques used in electrocatalysis and photocatalysis research are provided. Sources of electro/photocatalyst data and current approaches to representing these materials by mathematical features are described, the most commonly used machine learning methods summarized, and the quality and utility of electro/photocatalyst models evaluated. Illustrations of how machine learning models are applied to novel electro/photocatalyst discovery and used to elucidate electrocatalytic or photocatalytic reaction mechanisms are provided. The review offers a guide for materials scientists on the selection of machine learning methods for electrocatalysis and photocatalysis research. The application of machine learning to catalysis science represents a paradigm shift in the way advanced, next-generation catalysts will be designed and synthesized.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Biochemistry and Chemistry, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3042, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
21
|
Wolski L, Sobańska K, Muńko M, Czerniak A, Pietrzyk P. Unraveling the Origin of Enhanced Activity of the Nb 2O 5/H 2O 2 System in the Elimination of Ciprofloxacin: Insights into the Role of Reactive Oxygen Species in Interface Processes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31824-31837. [PMID: 35816763 PMCID: PMC9305982 DOI: 10.1021/acsami.2c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The overlooked role of reactive oxygen species (ROS), formed and stabilized on the surface of Nb2O5 after H2O2 treatment, was investigated in the adsorption and degradation of ciprofloxacin (CIP), a model antibiotic. The contribution of ROS to the elimination of CIP was assessed by using different niobia-based materials in which ROS were formed in situ or ex situ. The formation of ROS was confirmed by electron paramagnetic resonance (EPR) and Raman spectroscopy. The modification of the niobia surface charge by ROS was monitored with zeta potential measurements. The kinetics of CIP removal was followed by UV-vis spectroscopy, while identification of CIP degradation products and evaluation of their cytotoxicity were obtained with liquid chromatography-mass spectrometry (LC-MS) and microbiological studies, respectively. Superoxo and peroxo species were found to significantly improve the efficiency of CIP adsorption on Nb2O5 by modifying its surface charge. At the same time, it was found that improved removal of CIP in the dark and in the presence of H2O2 was mainly determined by the adsorption process. The enhanced adsorption was confirmed by infrared spectroscopy (IR), total organic carbon measurements (TOC), and elemental analysis. Efficient chemical degradation of adsorbed CIP was observed upon exposure of the Nb2O5/H2O2 system to UV light. Therefore, niobia is a promising inorganic adsorbent that exhibits enhanced sorption capacity toward CIP in the presence of H2O2 under dark conditions and can be easily regenerated in an environmentally benign way by irradiation with UV light.
Collapse
Affiliation(s)
- Lukasz Wolski
- Faculty
of Chemistry, Adam Mickiewicz University,
Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Kamila Sobańska
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Malwina Muńko
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adrian Czerniak
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Piotr Pietrzyk
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
22
|
Adhikari S, Murmu M, Kim DH. Core-Shell Engineered WO 3 Architectures: Recent Advances from Design to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202654. [PMID: 35771096 DOI: 10.1002/smll.202202654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Ongoing efforts to design novel materials with efficient structure-property-performance relations prove challenging. Core-shell structures have emerged as novel materials with controlled production routes and highly tailorable properties that offer extensive advantages in advanced oxidation processing, particularly in photocatalysis and photoelectrochemical applications. WO3 , which is an optoelectronically active semiconductor material, is a popular material in current studies in the field of photo(electro)catalysis. Considerable progress has been made using core-shell WO3 architectures, which warrants an evaluation in terms of processing and preparedness for their use in versatile catalytic and energy storage applications. This paper presents an in-depth assessment of core-shell WO3 architectures by highlighting the design challenges and protocols in powder and thin-film chemical processing. The development of specific core-shell designs for use in targeted applications, such as H2 production, CO2 reduction, wastewater treatment, batteries, supercapacitors, and sensing, is analyzed. The fundamental role of WO3 in core-shell structures to enhance efficiency is also discussed, along with the limitations and improvement strategies. Further, the prospects of core-shell WO3 architectures in energy conversion and environmental applications are suggested.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Manasi Murmu
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| |
Collapse
|
23
|
Zhang X, Huang W, Xia Z, Xian M, Bu F, Liang F, Feng D. One-pot synthesis of S-scheme WO3/BiOBr heterojunction nanoflowers enriched with oxygen vacancies for enhanced tetracycline photodegradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Jagadeesan D, Sompalli NK, Mohan AM, Rao CVSB, Nagarajan S, Deivasigamani P. ZrO 2-Ag 2O nanocomposites encrusted porous polymer monoliths as high-performance visible light photocatalysts for the fast degradation of pharmaceutical pollutants. Photochem Photobiol Sci 2022; 21:1273-1286. [PMID: 35384639 DOI: 10.1007/s43630-022-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
This work reports a unique ZrO2-Ag2O heterojunction nanocomposite uniformly dispersed on a macro-/meso-porous polymer monolithic template to serve as simple and effective visible light-driven heterogeneous plasmonic photocatalysts for water decontamination. The monolithic photocatalysts' structural properties and surface morphology are characterized using various surface and structural characterization techniques. The photocatalytic performance of the proposed photocatalysts is evaluated by optimizing multiple operational parameters. The photocatalytic properties of the fabricated monolithic nanocomposite are monitored through time-dependent photocatalytic disintegration of norfloxacin drug, a widely employed antimicrobial, with considerable aquatic persistence. The analytical results conclude that a (60:40) ZrO2-Ag2O nanocomposite embedded polymer monolith exhibits superior photocatalytic activity for the complete mineralization of norfloxacin molecules under optimized conditions of solution pH (3.0), photocatalyst quantity (100 mg), pollutant concentration (15 mg/L), photosensitizers (2.0 mM KBrO3), visible light intensity (300 W/cm2 tungsten lamp) and irradiation time (≤ 1 h). The proposed new-age inorganic-organic hybrid visible light photo-catalysts with superior structural and surface properties exhibit brilliant performance and fast responsiveness for water decontamination applications, in addition to their excellent chemical stability, high durability, multi-reusability, and cost-effectiveness.
Collapse
Affiliation(s)
- Dhivya Jagadeesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - C V S Brahmmananda Rao
- Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, 603102, India
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu, 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
25
|
Zhang H, Peng L, Li H, Su Y, Huang S. A novel Sn2Nb2O7/defective carbon nitride heterojunction photocatalyst: preparation and application for photocatalytic oxytetracycline removal. CrystEngComm 2022. [DOI: 10.1039/d2ce00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A traditional type-II Sn2Nb2O7/defective carbon nitride (HCN) heterojunction structure photocatalyst was constructed aiming to enhance the photocatalytic property of pyrochlores Sn2Nb2O7. Experimental analysis verified that a built-in electric field was...
Collapse
|
26
|
Boateng E, Thind SS, Chen S, Chen A. Synthesis and electrochemical studies of WO
3
‐based nanomaterials for environmental, energy and gas sensing applications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Emmanuel Boateng
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
| | - Sapanbir S. Thind
- Department of Chemistry Lakehead University Thunder Bay Ontario Canada
| | - Shuai Chen
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
| | - Aicheng Chen
- Department of Chemistry Electrochemical Technology Centre University of Guelph Guelph Ontario Canada
- Department of Chemistry Lakehead University Thunder Bay Ontario Canada
| |
Collapse
|