1
|
Wang H, Liu Z, Fang Y, Luo X, Zheng C, Xu Y, Zhou X, Yuan Q, Lv S, Ma L, Lao YH, Tao Y, Li M. Spatiotemporal release of non-nucleotide STING agonist and AKT inhibitor from implantable 3D-printed scaffold for amplified cancer immunotherapy. Biomaterials 2024; 311:122645. [PMID: 38850717 DOI: 10.1016/j.biomaterials.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiangfu Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Limin Ma
- Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J, Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv 2024; 31:2391001. [PMID: 39239763 PMCID: PMC11382735 DOI: 10.1080/10717544.2024.2391001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
3
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
4
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Xu Y, Xu C, Song H, Feng X, Ma L, Zhang X, Li G, Mu C, Tan L, Zhang Z, Liu Z, Luo Z, Yang C. Biomimetic bone-periosteum scaffold for spatiotemporal regulated innervated bone regeneration and therapy of osteosarcoma. J Nanobiotechnology 2024; 22:250. [PMID: 38750519 PMCID: PMC11094931 DOI: 10.1186/s12951-024-02430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Huan Song
- Otorhinolaryngology Head and Neck Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, 430033, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengdong Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Clinical Medicine, Department of Orthopedics, Chengdu Medical College, the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Kumar P, Shamim, Muztaba M, Ali T, Bala J, Sidhu HS, Bhatia A. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann Biomed Eng 2024; 52:1184-1194. [PMID: 38418691 DOI: 10.1007/s10439-024-03479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient's condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, 250001, India
| | - Mohammad Muztaba
- Department of Pharmacology, Praduman Singh Sikshan Prasikshan Sansthan Pharmacy College, Phutahiya Sansarpur, Basti, Uttar Pradesh, 272001, India
| | - Tarmeen Ali
- Department of Pharmacy, Swami Vivekanand Subharti University, Subhartipuram, Meerut, Uttar Pradesh, 250005, India
| | - Jyoti Bala
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Haramritpal Singh Sidhu
- Department of Mechanical Engineering, Giani Zail Singh Campus College of Engineering & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| |
Collapse
|
7
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
8
|
Hu P, Lu J, Li C, He Z, Wang X, Pan Y, Zhao L. Injectable Magnetic Hydrogel Filler for Synergistic Bone Tumor Hyperthermia Chemotherapy. ACS APPLIED BIO MATERIALS 2024; 7:1569-1578. [PMID: 38349029 DOI: 10.1021/acsabm.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of bone tumor treatment is primarily limited by inadequate tumor resection, resulting in recurrence and metastasis, as well as the deep location of tumors. Herein, an injectable doxorubicin (DOX)-loaded magnetic alginate hydrogel (DOX@MAH) was developed to evaluate the efficacy of an alternating magnetic field (AMF)-responsive, chemothermal synergistic therapy for multimodality treatment of bone tumors. The prepared hydrogel exhibits a superior drug-loading capacity and a continuous DOX release. This multifunctionality can be attributed to the combined use of DOX for chemotherapy and iron oxide nanoparticle-containing alginate hydrogels as magnetic hyperthermia agents to generate hyperthermia for tumor elimination without the limit on penetration depth. Moreover, the hydrogel can be formed when in contact with the calcium ions, which are abundant in bone tissues; therefore, this hydrogel could perfectly fit the bone defects caused by the surgical removal of the bone tumor tissue, and the hydrogel could tightly attach the surgical margin of the bone to realize a high efficacy residual tumor tissue elimination treated by chemothermal synergistic therapy. The hydrogel demonstrates excellent hyperthermia performance, as evidenced by in vitro cytotoxicity tests on tumor cells. These tests reveal that the combined therapy based on DOX@MAH under AMF significantly induces cell death compared to single magnetic hyperthermia or chemotherapy. In vivo antitumor effects in tumor-bearing mice demonstrate that DOX@MAH injection at the tumor site effectively inhibits tumor growth and leads to tumor necrosis. This work not only establishes an effective DOX@MAH system as a synergistic chemothermal therapy platform for treating bone tumors but also sheds light on the application of alginate to combine calcium ions of the bone to treat bone defect diseases.
Collapse
Affiliation(s)
- Peilun Hu
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China
| | - Jingsong Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chengli Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China
| | - Zhijun He
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- School of life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongwei Pan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zhao Y, Kang H, Xia Y, Sun L, Li F, Dai H. 3D Printed Photothermal Scaffold Sandwiching Bacteria Inside and Outside Improves The Infected Microenvironment and Repairs Bone Defects. Adv Healthc Mater 2024; 13:e2302879. [PMID: 37927129 DOI: 10.1002/adhm.202302879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Bone infection is one of the most devastating orthopedic outcomes, and overuse of antibiotics may cause drug-resistance problems. Photothermal therapy(PTT) is a promising antibiotic-free strategy for treating infected bone defects. Considering the damage to normal tissues and cells caused by high-temperature conditions in PTT, this study combines the antibacterial property of Cu to construct a multi-functional Cu2 O@MXene/alpha-tricalcium phosphate (α-TCP) scaffold support with internal and external sandwiching through 3D printing technology. On the "outside", the excellent photothermal property of Ti3 C2 MXene is used to carry out the programmed temperature control by the active regulation of 808 nm near-infrared (NIR) light. On the "inside", endogenous Cu ions gradually release and the release accumulates within the safe dose range. Specifically, programmed temperature control includes brief PTT to rapidly kill early bacteria and periodic low photothermal stimulation to promote bone tissue growth, which reduces damage to healthy cells and tissues. Meanwhile, Cu ions are gradually released from the scaffold over a long period of time, strengthening the antibacterial effect of early PTT, and promoting angiogenesis to improve the repair effect. PTT combined with Cu can deliver a new idea forinfected bone defects through in vitro and vivo application.
Collapse
Affiliation(s)
- Youzi Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuhao Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Lingshun Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- National Energy Key Laboratory For New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
10
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Zhang G, Lu Y, Song J, Huang D, An M, Chen W, Han P, Yao X, Zhang X. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration. J Colloid Interface Sci 2023; 652:1673-1684. [PMID: 37666199 DOI: 10.1016/j.jcis.2023.08.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
After resection of bone tumour, the risk of cancer recurrence and numerous bone defects continues to threaten the health of patients. To overcome the challenge, we developed a novel multifunctional scaffold material consisting mainly of nano-hydroxyapatite particles (n-HA), MXene nanosheets and g-C3N4 to prevent tumour recurrence and promote bone formation. N-HA has the potential to restrict the growth of osteosarcoma cells, and the combination of MXene and g-C3N4 enables the scaffolds to produce photodynamic and photothermal effects simultaneously under near infrared (NIR) irradiation. Surprisingly, n-HA can further enhance the synergistic anti-tumour function of photodynamic and photothermal, and the scaffolds can eradicate osteosarcoma cells in only 10 min at a mild temperature of 45 ℃. Moreover, the scaffold exhibit exceptional cytocompatibility and possesses the capacity to induce osteogenic differentiation of bone marrow mesenchymal stem cells. Therefore, this multifunctional scaffold can not only inhibits the proliferation of bone tumour cells and rapidly eradicate bone tumour through NIR irradiation, but also enhances osteogenic activity. This promising measure can be used to treat tissue damage after bone tumour resection.
Collapse
Affiliation(s)
- Guannan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China
| | - Ying Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China
| | - Jianbo Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Meiwen An
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiangyu Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
12
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
13
|
Wu J, Liang B, Lu S, Xie J, Song Y, Wang L, Gao L, Huang Z. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2023; 19:012002. [PMID: 37918002 DOI: 10.1088/1748-605x/ad08e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
3D printing technology is an increasing approach consisting of material manufacturing through the selective incremental delamination of materials to form a 3D structure to produce products. This technology has different advantages, including low cost, short time, diversification, and high precision. Widely adopted additive manufacturing technologies enable the creation of diagnostic tools and expand treatment options. Coupled with its rapid deployment, 3D printing is endowed with high customizability that enables users to build prototypes in shorts amounts of time which translates into faster adoption in the medical field. This review mainly summarizes the application of 3D printing technology in the diagnosis and treatment of cancer, including the challenges and the prospects combined with other technologies applied to the medical field.
Collapse
Affiliation(s)
- Jinmei Wu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Bing Liang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Shuoqiao Lu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Jinlan Xie
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
| | - Yan Song
- China Automotive Engineering Research Institute Co., Ltd (CAERI), Chongqing 401122, People's Republic of China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd., Nanjing 210023, Jiangsu, People's Republic of China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, No.158, University West Road, Nanning 530000, Guangxi, People's Republic of China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
15
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
16
|
Huang B, Yin Z, Zhou F, Su J. Functional anti-bone tumor biomaterial scaffold: construction and application. J Mater Chem B 2023; 11:8565-8585. [PMID: 37415547 DOI: 10.1039/d3tb00925d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bone tumors, including primary bone tumors and bone metastases, have been plagued by poor prognosis for decades. Although most tumor tissue is removed, clinicians are still confronted with the dilemma of eliminating residual cancer cells and regenerating defective bone tissue after surgery. Therefore, functional biomaterial scaffolds are considered to be the ideal candidates to bridge defective tissues and restrain cancer recurrence. Through functionalized structural modifications or coupled therapeutic agents, they provide sufficient mechanical strength and osteoinductive effects while eliminating cancer cells. Numerous novel approaches such as photodynamic, photothermal, drug-conjugated, and immune adjuvant-assisted therapies have exhibited remarkable efficacy against tumors while exhibiting low immunogenicity. This review summarizes the progress of research on biomaterial scaffolds based on different functionalization strategies in bone tumors. We also discuss the feasibility and advantages of the combined application of multiple functionalization strategies. Finally, potential obstacles to the clinical translation of anti-tumor bone bioscaffolds are highlighted. This review will provide valuable references for future advanced biomaterial scaffold design and clinical bone tumor therapy.
Collapse
Affiliation(s)
- Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis. Biomaterials 2023; 293:121942. [PMID: 36512863 DOI: 10.1016/j.biomaterials.2022.121942] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.
Collapse
|
19
|
Zhang B, Xing F, Chen L, Zhou C, Gui X, Su Z, Fan S, Zhou Z, Jiang Q, Zhao L, Liu M, Fan Y, Zhang X. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213261. [PMID: 36577193 DOI: 10.1016/j.bioadv.2022.213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Currently, various bioceramics have been widely used in bone regeneration. However, it remains a huge challenge to remote isolation bone regeneration, such as severed finger regeneration. The remote isolation bone tissue has a poor regenerative microenvironment that lacks enough blood and nutrition supply. It is very difficult to repair and regenerate. In this study, well-controlled multi-level porous 3D-printed calcium phosphate (CaP) bioceramic scaffolds with precision customized structures were fabricated by high-resolution digital light projection (DLP) printing technology for remote isolation bone regeneration. In vitro results demonstrated that optimizing material processing procedures could achieve multi-level control of 3D-printed CaP bioceramic scaffolds and enhance the osteoinduction ability of bioceramics effectively. In vivo results indicated that 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedure exhibited a promising ability of bone regeneration and osteoinduction in ectopic osteogenesis and in situ caudal vertebrae regeneration in beagles. This study provided a promising strategy based on 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedures for remote isolation bone regeneration, such as severed finger regeneration.
Collapse
Affiliation(s)
- Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shiqi Fan
- Schools of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhigang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Zhang Y, Liu X, Geng C, Shen H, Zhang Q, Miao Y, Wu J, Ouyang R, Zhou S. Two Hawks with One Arrow: A Review on Bifunctional Scaffolds for Photothermal Therapy and Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030551. [PMID: 36770512 PMCID: PMC9920372 DOI: 10.3390/nano13030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 05/21/2023]
Abstract
Despite the significant improvement in the survival rate of cancer patients, the total cure of bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells. For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy (PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors, and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone defects. This review summarizes the recent application progress of various bifunctional scaffolds and puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor therapy and bone regeneration: two hawks with one arrow.
Collapse
Affiliation(s)
- Yulong Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chongrui Geng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyu Shen
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiupeng Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Jingxiang Wu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Shuang Zhou
- Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Ma Y, Zhang B, Sun H, Liu D, Zhu Y, Zhu Q, Liu X. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. Int J Nanomedicine 2023; 18:293-305. [PMID: 36683596 PMCID: PMC9851059 DOI: 10.2147/ijn.s390500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Bone tumors, including primary bone tumors, invasive bone tumors, metastatic bone tumors, and others, are one of the most clinical difficulties in orthopedics. Once these tumors have grown and developed in the bone system, they will interact with osteocytes and other environmental cells in the bone system's microenvironment, leading to the eventual damage of the bone's physical structure. Surgical procedures for bone tumors may result in permanent defects. The dual-efficacy of tissue regeneration and tumor treatment has made biomaterial scaffolds frequently used in treating bone tumors. 3D printing technology, also known as additive manufacturing or rapid printing prototype, is the transformation of 3D computer models into physical models through deposition, curing, and material fusion of successive layers. Adjustable shape, porosity/pore size, and other mechanical properties are an advantage of 3D-printed objects, unlike natural and synthetic material with fixed qualities. Researchers have demonstrated the significant role of diverse 3D-printed biological scaffolds in the treatment for bone tumors and the regeneration of bone tissue, and that they enhanced various performance of the products. Based on the characteristics of bone tumors, this review synthesized the findings of current researchers on the application of various 3D-printed biological scaffolds including bioceramic scaffold, metal alloy scaffold and nano-scaffold, in bone tumors and discussed the advantages, disadvantages, and future application prospects of various types of 3D-printed biological scaffolds. Finally, the future development trend of 3D-printed biological scaffolds in bone tumor is summarized, providing a theoretical foundation and a larger outlook for the use of biological scaffolds in the treatment of patients with bone tumors.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Huifeng Sun
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, Changchun, People's Republic of China
| | - Dandan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuhang Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiangji Liu
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
22
|
Belluomo R, Khodaei A, Amin Yavari S. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomater 2023; 156:234-249. [PMID: 36028198 DOI: 10.1016/j.actbio.2022.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
Bone tissue exhibits critical factors for metastatic cancer cells and represents an extremely pleasant spot for further growth of tumors. The number of metastatic bone lesions and primary tumors that arise directly from cells comprised in the bone milieu is constantly increasing. Bioceramics have recently received significant attention in bone tissue engineering and local drug delivery applications. Additionally, additive manufacturing of bioceramics offers unprecedented advantages including the possibilities to fill irregular voids after the resection and fabricate patient-specific implants. Herein, we investigated the recent advances in additively manufactured bioceramics and ceramic-based composites that were used in the local bone tumor treatment and reconstruction of bone tumor defects. Furthermore, it has been extensively explained how to bi-functionalize ceramics-based biomaterials and what current limitations impede their clinical application. We have also discussed the importance of further development into ceramic-based biomaterials and molecular biology of bone tumors to: (1) discover new potential therapeutic targets to enhance conventional therapies, (2) local delivering of bio-molecular agents in a customized and "smart" way, and (3) accomplish a complete elimination of tumor cells in order to prevent tumor recurrence formation. We emphasized that by developing the research focus on the introduction of novel 3D-printed bioceramics with unique properties such as stimuli responsiveness, it will be possible to fabricate smart bioceramics that promote bone regeneration while minimizing the side-effects and effectively eradicate bone tumors while promoting bone regeneration. In fact, by combining all these therapeutic strategies and additive manufacturing, it is likely to provide personalized tumor-targeting therapies for cancer patients in the foreseeable future. STATEMENT OF SIGNIFICANCE: To increase the survival rates of cancer patients, different strategies such as surgery, reconstruction, chemotherapy, radiotherapy, etc have proven to be essential. Nonetheless, these therapeutic protocols have reached a plateau in their effectiveness due to limitations including drug resistance, tumor recurrence after surgery, toxic side-effects, and impaired bone regeneration following tumor resection. Hence, novel approaches to specifically and locally attack cancer cells, while also regenerating the damaged bony tissue, have being developed in the past years. This review sheds light to the novel approaches that enhance local bone tumor therapy and reconstruction procedures by combining additive manufacturing of ceramic biomaterials and other polymers, bioactive molecules, nanoparticles to affect bone tumor functions, metabolism, and microenvironment.
Collapse
Affiliation(s)
- Ruggero Belluomo
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
24
|
Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr Polym 2023; 300:120264. [DOI: 10.1016/j.carbpol.2022.120264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
25
|
Enzyme-Enhanced Codelivery of Doxorubicin and Bcl-2 Inhibitor by Electrospun Nanofibers for Synergistic Inhibition of Prostate Cancer Recurrence. Pharmaceuticals (Basel) 2022; 15:ph15101244. [PMID: 36297356 PMCID: PMC9610395 DOI: 10.3390/ph15101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
One of the great challenges of postoperative prostate cancer management is tumor recurrence. Although postoperative chemotherapy presents benefits to inhibit unexpected recurrence, it is still limited due to the drug resistance or intolerable complications of some patients. Electrospun nanofiber, as a promising drug carrier, demonstrating sustained drug release behavior, can be implanted into the tumor resection site during surgery and is conductive to tumor inhibition. Herein, we fabricated electrospun nanofibers loaded with doxorubicin (DOX) and ABT199 to synergistically prevent postoperative tumor recurrence. Enzymatic degradation of the biodegradable electrospun nanofibers facilitated the release of the two drugs. The primarily released DOX from the electrospun nanofibers effectively inhibited tumor recurrence. However, the sustained release of DOX led to drug resistance of the tumor cells, yielding unsatisfactory eradication of the residual tumor. Remarkably, the combined administration of DOX and ABT199, simultaneously released from the nanofibers, not only prolonged the chemotherapy by DOX but also overcame the drug resistance via inhibiting the Bcl-2 activation and thereby enhancing the apoptosis of tumor cells by ABT199. This dual-drug-loaded implant system, combining efficient chemotherapy and anti-drug resistance, offers a prospective strategy for the potent inhibition of postoperative tumor recurrence.
Collapse
|
26
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
27
|
Dang W, Chen WC, Ju E, Xu Y, Li K, Wang H, Wang K, Lv S, Shao D, Tao Y, Li M. 3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. J Nanobiotechnology 2022; 20:266. [PMID: 35672826 PMCID: PMC9171966 DOI: 10.1186/s12951-022-01454-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractSurgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.
Graphical Abstract
Collapse
|
28
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
29
|
Chen G, Yin Y, Chen C. Limb-salvage surgery using personalized 3D-printed porous tantalum prosthesis for distal radial osteosarcoma: A case report. Medicine (Baltimore) 2021; 100:e27899. [PMID: 34797342 PMCID: PMC8601349 DOI: 10.1097/md.0000000000027899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Three-dimensional (3D) printing has been widely utilized for treating the tumors of bone and soft tissue. We herewith report a unique case of distal radial osteosarcoma who was treated with a 3D printed porous tantalum prosthesis.Patient concerns: A 58-year-old Chinese male patient presented to our clinic complaining about a 6-month history of a progressive pain at his right hand, associated with a growing lump 2 months later. DIAGNOSIS Osteosarcoma of distal radius confirmed by percutaneous biopsy and tumor biopsy. INTERVENTIONS A limb-salvage surgery was performed with a 3D printed porous tantalum prosthesis, combined with the postoperative chemotherapy for 4 cycles. OUTCOMES At 2-year follow-up, complete pain relief and satisfactory functional recovery of his right wrist were observed. LESSONS Personalized 3D printed prosthesis is an effective and feasible method for treating the osteosarcoma and reconstruction of complex bone defects.
Collapse
Affiliation(s)
- Ge Chen
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yiran Yin
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Chang Chen
- Department of Orthopedics, Ziyang First People‘s Hospital, Ziyang, Sichuan Province, China
| |
Collapse
|
30
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|