1
|
Azizi N, Eslami R, Goudarzi S, Zarrin H. Harnessing synergy: Polydopamine-hBN integration in electrospun nanofibers for Co (II) ion, methylene blue and crystal violet dyes adsorption. CHEMOSPHERE 2024; 363:142842. [PMID: 39009089 DOI: 10.1016/j.chemosphere.2024.142842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
In today's world, major pollutants, such as cationic dyes and heavy metals, pose a serious threat to human health and the environment. In this study, a novel adsorbent was created through the electrospinning of polyvinyl alcohol/polyacrylic acid (PVA/PAA), incorporated with hexagonal boron nitride (hBN) coated with polydopamine (PDA). The integration of hBN and PDA substantially enhanced the adsorption capacity of the PVA/PAA fibers, making them highly effective in adsorbing cationic dyes such as methylene blue and crystal violet, as well as cobalt (II) ions, from contaminated water. The adsorbents were assessed to understand how their adsorption behavior varies with pH, as well as to examine their adsorption kinetics and isotherms. The results indicate that the PVA/PAA-hBN@PDA adsorbent has maximum adsorption capacities of 1029.57 mg/g, 793.65 mg/g, and 62.46 mg/g for methylene blue, crystal violet, and cobalt (II) ions, respectively. This underscores the superior performance of the PVA/PAA-hBN@PDA adsorbent when compared to both the PVA/PAA and PVA/PAA-hBN adsorbents. The adsorption kinetics adhered to a pseudo-second-order model, indicating chemisorption, whereas the Langmuir model implied a monolayer adsorption. Overall, the findings of this study highlight the efficacy of harnessing the synergistic capabilities of hBN and PDA within the PVA/PAA-hBN@PDA adsorbents, providing an efficient and eco-friendly approach to removing cationic dyes and heavy metals from contaminated water, and thereby contributing to a cleaner and safer environment for all.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada.
| |
Collapse
|
2
|
Tang L, Ruan K, Liu X, Tang Y, Zhang Y, Gu J. Flexible and Robust Functionalized Boron Nitride/Poly(p-Phenylene Benzobisoxazole) Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation. NANO-MICRO LETTERS 2023; 16:38. [PMID: 38032407 PMCID: PMC10689708 DOI: 10.1007/s40820-023-01257-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
With the rapid development of 5G information technology, thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent. In this work, "high-temperature solid-phase & diazonium salt decomposition" method is carried out to prepare benzidine-functionalized boron nitride (m-BN). Subsequently, m-BN/poly(p-phenylene benzobisoxazole) nanofiber (PNF) nanocomposite paper with nacre-mimetic layered structures is prepared via sol-gel film transformation approach. The obtained m-BN/PNF nanocomposite paper with 50 wt% m-BN presents excellent thermal conductivity, incredible electrical insulation, outstanding mechanical properties and thermal stability, due to the construction of extensive hydrogen bonds and π-π interactions between m-BN and PNF, and stable nacre-mimetic layered structures. Its λ∥ and λ⊥ are 9.68 and 0.84 W m-1 K-1, and the volume resistivity and breakdown strength are as high as 2.3 × 1015 Ω cm and 324.2 kV mm-1, respectively. Besides, it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640 °C, showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
Collapse
Affiliation(s)
- Lin Tang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xi Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
3
|
Al-Mufti SMS, Almontasser A, Rizvi SJA. Unsaturated Polyester Resin Filled with Cementitious Materials: A Comprehensive Study of Filler Loading Impact on Mechanical Properties, Microstructure, and Water Absorption. ACS OMEGA 2023; 8:20389-20403. [PMID: 37332804 PMCID: PMC10268611 DOI: 10.1021/acsomega.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
In recent years, cheaply available cementitious materials (CMs) are increasingly finding useful applications in construction engineering. This manuscript focused on the development and fabrication of unsaturated polyester resin (UPR)/cementitious material composites to be potentially useful in a variety of construction applications. For this purpose, five types of powders from widely available fillers, i.e., black cement (BC), white cement (WC), plaster of Paris (POP), sand (S), and pit sand (PS), were used. Cement polymer composite (CPC) specimens were prepared by a conventional casting process with various filler contents of 10, 20, 30, and 40 wt %. Neat UPR and CPCs were investigated mechanically by testing their tensile, flexural, compressive, and impact properties. Electron microscopy analysis was used to analyze the relation between the microstructure and mechanical properties of CPCs. The assessment of water absorption was conducted. The highest tensile, flexural, compressive upper yield, and impact strength values were recorded for POP/UPR-10, WC/UPR-10, WC/UPR-40, and POP/UPR-20, respectively. The highest percentages of water absorption were found to be 6.202 and 5.07% for UPR/BC-10 and UPR/BC-20, while the lowest percentages were found to be 1.76 and 1.84% for UPR/S-10 and UPR/S-20, respectively. Based on the finding of this study, the properties of CPCs were found to depend on not only the filler content but also the distribution, particle size, and combination between the filler and the polymer.
Collapse
Affiliation(s)
- Salah M. S. Al-Mufti
- Department
of Petroleum Studies, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Asma Almontasser
- Department
of Applied Physics, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Syed J. A. Rizvi
- Department
of Petroleum Studies, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Li S, Shen Y, Jia X, Xu M, Zong R, Liu G, Liu B, Huai X. Dopamine-Mediated Graphene Bridging Hexagonal Boron Nitride for Large-Scale Composite Films with Enhanced Thermal Conductivity and Electrical Insulation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1210. [PMID: 37049304 PMCID: PMC10097086 DOI: 10.3390/nano13071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Heat accumulation generated from confined space poses a threat to the service reliability and lifetime of electronic devices. To quickly remove the excess heat from the hot spot, it is highly desirable to enhance the heat dissipation in a specific direction. Herein, we report a facile route to fabricate the large-scale composite film with enhanced thermal conductivity and electrical insulation. The well-stacked composite films were constructed by the assembly of polydopamine (PDA)-modified graphene nanosheets (GNSPDA) and hexagonal boron nitride (BNPDA), as well as bacterial cellulose (BC). The introduction of the PDA layer greatly improves the interface compatibility between hybrid fillers and BC matrix, and the presence of GNSPDA-bridging significantly increases the probability of effective contact with BNPDA fillers, which is beneficial to form a denser and complete "BN-GNS-BN" heat conduction pathway and tight filler-matrix network, as supported by the Foygel model fitting and numerical simulation. The resulting BC/BNPDA/GNSPDA film shows the thermal conductivity and tensile strength of 34.9 W·m-1·K-1 and 30.9 MPa, which separately increases to 161% and 155% relative to the BC/BNPDA film. It was found that the low electrically conductive and high thermal conductive properties can be well balanced by tuning the mass ratio of GNSPDA at 5 wt%, and the electrical conductivity caused by GNSPDA can be effectively blocked by the BNPDA filler network, giving the low electrical conductivity of 1.8 × 10-10 S·cm-1. Meanwhile, the BC/BNPDA/GNSPDA composite films effectively transfer the heat and diminish the hot-spot temperature in cooling LED chip module application. Thus, the present study may pave the way to promoting the industrialization of scalable thermal management devices.
Collapse
Affiliation(s)
- Shikun Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Yutan Shen
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Xiao Jia
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Ruoyu Zong
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Bin Liu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| |
Collapse
|
5
|
Research progress on low dielectric constant modification of cellulose insulating paper for power transformers. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Li S, Liu B, Jia X, Xu M, Zong R, Li X, Liu G, Huai X. Numerical Simulation on the Optimization of the Anisotropic Thermal Conductivity of Hexagonal Boron Nitride/Nanofiber Composite Films. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Shikun Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Bin Liu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xiao Jia
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Ruoyu Zong
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Xunfeng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Nanjing Institute of Future Energy System, Nanjing 211135, China
| |
Collapse
|
7
|
Padurariu L, Horchidan N, Ciomaga CE, Curecheriu LP, Lukacs VA, Stirbu RS, Stoian G, Botea M, Florea M, Maraloiu VA, Pintilie L, Rotaru A, Mitoseriu L. Influence of Ferroelectric Filler Size and Clustering on the Electrical Properties of (Ag-BaTiO 3)-PVDF Sub-Percolative Hybrid Composites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5744-5759. [PMID: 36651701 DOI: 10.1021/acsami.2c15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The paper presents a study concerning the role of ferroelectric filler size and clustering in the dielectric properties of 20%BaTiO3-80%PVDF and of 20% (2%Ag-98%BaTiO3)-PVDF hybrid nanocomposites. By finite element calculations, it was shown that using fillers with ε > 103 does not provide a permittivity rise in the composites and the effective dielectric constant tends to saturate to specific values determined by the filler size and agglomeration degree. Irrespective of the ferroelectric filler sizes, the addition of metallic ultrafine nanoparticles (Ag) results in permittivity intensification and the effect is even stronger if the metallic nanoparticles are connected to a higher degree with the ferroelectric particles' surfaces. When using coarse ferroelectric fillers, the probability of clustering is higher, thus favoring the permittivity increase by field concentration in small regions close to the interfaces separating dissimilar materials. The modeling results were validated by an experimental dielectric analysis performed in a series of PVDF-based thick films with the same amount of BaTiO3 fillers or with Ag-BaTiO3 hybrid fillers. Similar trends as predicted by simulations were found experimentally but with slightly higher permittivity values which were assigned to the modifications of the polymer phase composition due to the presence of nanofillers and the local sample inhomogeneity (the presence of clustering, in particular for coarse BaTiO3 grains), which create regions with enhanced local fields.
Collapse
Affiliation(s)
- Leontin Padurariu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - Nadejda Horchidan
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - Cristina Elena Ciomaga
- Department of Exact & Natural Sciences, Institute of Interdisciplinary Research, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - Lavinia Petronela Curecheriu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - Vlad Alexandru Lukacs
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - Radu Stefan Stirbu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| | - George Stoian
- National Institute of R&D for Technical Physics, 700050Iasi, Romania
| | - Mihaela Botea
- National Institute of Materials Physics, Atomistilor 405A, 077125Magurele, Romania
| | - Mihaela Florea
- National Institute of Materials Physics, Atomistilor 405A, 077125Magurele, Romania
| | | | - Lucian Pintilie
- National Institute of Materials Physics, Atomistilor 405A, 077125Magurele, Romania
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan Cel Mare University, 720229Suceava, Romania
| | - Liliana Mitoseriu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, No. 11, 700506Iasi, Romania
| |
Collapse
|
8
|
Xie X, Yang D. Achieving High Thermal Conductivity and Satisfactory Insulating Properties of Elastomer Composites by Self-Assembling BN@GO Hybrids. Polymers (Basel) 2023; 15:polym15030523. [PMID: 36771823 PMCID: PMC9921282 DOI: 10.3390/polym15030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
With increasing heat accumulation in advanced modern electronic devices, dielectric materials with high thermal conductivity (λ) and excellent electrical insulation have attracted extensive attention in recent years. Inspired by mussel, hexagonal boron nitride (hBN) and graphene oxide (GO) are assembled to construct mhBN@GO hybrids with the assistance of poly(catechol-polyamine). Then, mhBN@GO hybrids are dispersed in carboxy nitrile rubber (XNBR) latex via emulsion coprecipitation to form elastomer composites with a high λ and satisfactory insulating properties. Thanks to the uniform dispersion of mhBN@GO hybrids, the continuous heat conduction pathways exert a significant effect on enhancing the λ and decreasing the interface thermal resistance of XNBR composites. In particular, the λ value of 30 vol% mhBN@GO/XNBR composite reaches 0.4348 W/(m·K), which is 2.7 times that of the neat XNBR (0.1623 W/(m·K)). Meanwhile, the insulating hBN platelets hinder the electron transfer between adjacent GO sheets, leading to satisfactory electrical insulation in XNBR composites, whose AC conductivity is as low as 10-10 S/cm below 100 Hz. This strategy opens up new prospects in the assembly of ceramic and carbonaceous fillers to prepare dielectric elastomer composites with high λ and satisfactory electrical insulation, making them promising for modern electrical systems.
Collapse
Affiliation(s)
- Xing Xie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Dan Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence:
| |
Collapse
|