1
|
Zhang Y, Wu C, Gu H, Song Y, Zhao R, Zhang D, Xie Z, Liu Y, Cheng Z. An Active Strategy Based on Different Droplet Removal Modes on Polydimethylsiloxane Magnetic Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400466. [PMID: 38676346 DOI: 10.1002/smll.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The efficient removal of droplets on solid surfaces holds significant importance in the field of fog collection, condensation heat transfer, and so on. However, on current typical surfaces, droplets are characterized by a passive and single removal mode, contingent on the traction force (e.g., capillary force, Laplace pressure, etc.) generated by the surface's physics and chemistry design, posing challenges for enhancing the efficiency of droplet removal. In this paper, an effective active strategy based on different removal modes is demonstrated on magnetic responsive polydimethylsiloxane (PDMS) superhydrophobic microplates (RM-MPSM). By regulating the parameters of microplates and droplet volume, different effective departure modes (top jumping and side departure) can be induced to facilitate the removal of droplets. Moreover, the removal volume of droplets through the side departure mode exhibits a significant reduction compared to that observed in the top jumping mode. The exceptional removal ability of RM-MPSM demonstrates adaptability to diverse functional applications: efficient fog collection, removal of condensation droplets and micro-particles. The efficient modes of droplet removal demonstrated in this work hold significant implications for broadening its application in many fields, such as droplet collection, heat transfer, and anti-icing.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chao Wu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haoyu Gu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yingbin Song
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dongjie Zhang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Chu J, Feng X, Li Y, Li F, Tian G. Hierarchical Structure with Microcrater Covered with Nanograss Enhancing Condensation and Its Antifrosting/Anti-Icing Performance Inspired by Euphorbia helioscopia L. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10313-10325. [PMID: 38683169 DOI: 10.1021/acs.langmuir.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Over an extended period of evolution and natural selection, a multitude of species developed a diverse array of biological interface features with specific functions. These biological structures provide a rich source of inspiration for the design of bionic structures on superhydrophobic surfaces. Understanding the functional mechanism of plant leaves is of paramount importance for the advancement of new engineering materials and the further promotion of engineering applications of bionic research. The hierarchical structure of microcrater-covered nanograss (MCNG) on the surface of E. helioscopia L. leaf provided the inspiration for the bionic MCNG surface, which was successfully prepared on a copper substrate by hybrid laser micromachining technology and chemical etching. The combined action of texture structure and surface chemistry resulted in a contact angle of 169° ± 1° for MCNG surface droplets and a rolling angle of less than 1°. Notably, the condensation-induced adhesion force does not augment with the increase of the temperature difference, which facilitated the shedding of hot droplets from the surface. The microscope observation revealed a high density of condensed droplets on the MCNG surface and the tangible jumping behavior of the droplets. The fabricated MCNG also demonstrated excellent antifrost/anti-icing abilities in low-temperature and high-humidity environments. Finally, the study confirmed the exceptional mechanical durability and reusability of the MCNG surface through various tests, including scratch damage, sandpaper wear, water flow impact and flushing, and condensation-drying cycle tests. The nanograss can be effectively protected within the microcrater structure. This research presents a promising approach for preventing and/or removing unwanted droplets in numerous engineering applications.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yan Li
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengqin Li
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
3
|
Donati M, Regulagadda K, Lam CWE, Milionis A, Sharma CS, Poulikakos D. Metal Surface Engineering for Extreme Sustenance of Jumping Droplet Condensation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1257-1265. [PMID: 38156900 PMCID: PMC10795172 DOI: 10.1021/acs.langmuir.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Water vapor condensation on metallic surfaces is critical to a broad range of applications, ranging from power generation to the chemical and pharmaceutical industries. Enhancing simultaneously the heat transfer efficiency, scalability, and durability of a condenser surface remains a persistent challenge. Coalescence-induced condensing droplet jumping is a capillarity-driven mechanism of self-ejection of microscopic condensate droplets from a surface. This mechanism is highly desired due to the fact that it continuously frees up the surface for new condensate to form directly on the surface, enhancing heat transfer without requiring the presence of the gravitational field. However, this condensate ejection mechanism typically requires the fabrication of surface nanotextures coated by an ultrathin (<10 nm) conformal hydrophobic coating (hydrophobic self-assembled monolayers such as silanes), which results in poor durability. Here, we present a scalable approach for the fabrication of a hierarchically structured superhydrophobic surface on aluminum substrates, which is able to withstand adverse conditions characterized by condensation of superheated steam shear flow at pressure and temperature up to ≈1.42 bar and ≈111 °C, respectively, and velocities in the range ≈3-9 m/s. The synergetic function of micro- and nanotextures, combined with a chemically grafted, robust ultrathin (≈4.0 nm) poly-1H,1H,2H,2H-perfluorodecyl acrylate (pPFDA) coating, which is 1 order of magnitude thinner than the current state of the art, allows the sustenance of long-term coalescence-induced condensate jumping drop condensation for at least 72 h. This yields unprecedented, up to an order of magnitude higher heat transfer coefficients compared to filmwise condensation under the same conditions and significantly outperforms the current state of the art in terms of both durability and performance establishing a new milestone.
Collapse
Affiliation(s)
- Matteo Donati
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Kartik Regulagadda
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Cheuk Wing Edmond Lam
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Athanasios Milionis
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Chander Shekhar Sharma
- Thermofluidics
Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Dimos Poulikakos
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Ding L, Dong S, Yu Y, Li X, An L. Bionic Surfaces for Fog Collection: A Comprehensive Review of Natural Organisms and Bioinspired Strategies. ACS APPLIED BIO MATERIALS 2023; 6:5193-5209. [PMID: 38104272 DOI: 10.1021/acsabm.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Water scarcity has become a critical global threat, particularly in arid and underdeveloped regions. However, certain insects and plants have evolved the capability to obtain water from fog under these arid conditions. Bionic fog collection, characterized by passive harvesting, minimal energy requirements, and low maintenance costs, has proven to be an efficient method for water harvesting, offering a sustainable water source. This review introduces two superwettable surfaces, namely, superhydrophilic and superhydrophobic surfaces, detailing their preparation methods and applications in fog collection. The fog collection mechanisms of three typical natural organisms, Namib Desert beetles, spider silk, and cactus, along with their bionic surfaces for fog collection devices, are discussed. Additionally, other biological surfaces exhibiting fog transport properties are presented. The main challenges regarding the fabrication and application of bionic fog collection are summarized. Furthermore, we firmly believe that environmentally friendly, low-cost, and stable fog collection materials or devices hold promising prospects for future applications.
Collapse
Affiliation(s)
- Lan Ding
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Shuliang Dong
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Yifan Yu
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Xianzhun Li
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Libao An
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| |
Collapse
|
5
|
Feng X, Chu J, Tian G, Wang Z, Zhou W, Zhang X, Lian Z. Phyllostachys Viridis-Leaf-like MLMN Surfaces Constructed by Nanosecond Laser Hybridization for Superhydrophobic Antifogging and Anti-Icing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37919234 DOI: 10.1021/acsami.3c14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In nature, many species commonly evolve specific functional surfaces to withstand harsh external environments. In particular, structured wettability of surfaces has attracted tremendous interest due to its great potential in antifogging and anti-icing properties. Phyllostachys Viridis is a resistant low-temperature (-18 °C) plant with superhydrophobicity and ice resistivity behaviors. In this work, with inspiration from the representative cold-tolerant plants leaves, a unique multilevel micronano (MLMN) surface was fabricated on copper substrate by ultrafast laser process, which exhibited superior superhydrophobic characteristics with the water contact angle > 165° and rolling angle< 2°. In the dynamic wettability experiment, the rebound efficiency of the droplet on the MLMN surface reached 20.6%, and the contact time was only 10.6 ms. In the condensation experiment, the nucleation, growth, merging, and bouncing of fog drops on the surface was distinctly observed, indicating that rational texture structures can improve the antifogging performance of the surface. In the anti-icing experiment, the freezing time was delayed to 921 s at -10 °C, and the freezing time of salt water reached a staggering 1214 s. Moreover, the mechanical durability of MLMN surfaces was confirmed by scratch damage, sandpaper abrasion, and icing and melting cycle tests, and their repairability was evaluated for product applications in practice. Finally, the underlying antifogging/anti-icing strategy of the MLMN surface was also revealed. We anticipate that the investigations offer a promising way to handily design and fabricate multiscale hierarchical structures with reliable antifogging and anti-icing performance, especially in saltwater-related applications.
Collapse
Affiliation(s)
- Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhizhong Wang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wen Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaowei Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhongxu Lian
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
6
|
Chu J, Tian G, Feng X. Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. NANOSCALE 2023. [PMID: 37368459 DOI: 10.1039/d3nr01767b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In past decades, antifogging surfaces have drawn more and more attention owing to their promising and wide applications such as in aerospace, traffic transportation, optical devices, the food industry, and medical and other fields. Therefore, the potential hazards caused by fogging need to be solved urgently. At present, the up-and-coming antifogging surfaces have been developing swiftly, and can effectively achieve antifogging effects primarily by preventing fog formation and rapid defogging. This review analyzes and summarizes current progress in antifogging surfaces. Firstly, some bionic and typical antifogging structures are described in detail. Then, the antifogging materials explored thus far, mainly focusing on substrates and coatings, are extensively introduced. After that, the solutions for improving the durability of antifogging surfaces are explicitly classified in four aspects. Finally, the remaining big challenges and future development trends of the ascendant antifogging surfaces are also presented.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|
7
|
Fu X, Zhu Q, Liu D, Liu B, Kuang L, Feng Y, Chu F, Huang Z. Enhanced Moisture Condensation on Hierarchical Structured Superhydrophobic-Hydrophilic Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:863-869. [PMID: 34968065 DOI: 10.1021/acs.langmuir.1c03076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patterned surfaces combining hydrophobic and hydrophilic properties show great promise in moisture condensation; however, a comprehensive understanding of the multiscale interfacial behavior and the further controlling method is still lacking. In this paper, we studied the moisture condensation on a hybrid superhydrophobic-hydrophilic surface with hierarchical structures from micro- to nanoscale. For the first time, we demonstrated the effects of wettability difference and microstructure size on the final condensation efficiency. By optimizing the wettability difference, sub-millimeter pattern width, and microstructure size, maximum 90% enhancement of the condensation rate was achieved as compared with the superhydrophobic surface at a subcooling of 13 K. We also demonstrated the enhanced condensation mechanism by a detailed analysis of the condensation process. Our work proposed effective and systematical methods for controlling and optimizing moisture condensation on the patterned surfaces and shed light on application integration of such promising functional surfaces.
Collapse
Affiliation(s)
- Xifan Fu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Qinpeng Zhu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Denghui Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Binghan Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Lintao Kuang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhi Huang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei Province 430072, China
| |
Collapse
|
8
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|