1
|
Ramanujam R, Hsu HL, Shi ZE, Lung CY, Lee CH, Wubie GZ, Chen CP, Sun SS. Interfacial Layer Materials with a Truxene Core for Dopant-Free NiO x-Based Inverted Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310939. [PMID: 38453670 DOI: 10.1002/smll.202310939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Nickel oxide (NiOx) is commonly used as a holetransporting material (HTM) in p-i-n perovskite solar cells. However, the weak chemical interaction between the NiOx and CH3NH3PbI3 (MAPbI3) interface results in poor crystallinity, ineffective hole extraction, and enhanced carrier recombination, which are the leading causes for the limited stability and power conversion efficiency (PCE). Herein, two HTMs, TRUX-D1 (N2,N7,N12-tris(9,9-dimethyl-9H-fluoren-2-yl)-5,5,10,10,15,15-hexaheptyl-N2,N7,N12-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine) and TRUX-D2 (5,5,10,10,15,15-hexaheptyl-N2,N7,N12-tris(4-methoxyphenyl)-N2,N7,N12-tris(10-methyl-10H-phenothiazin-3-yl)-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine), are designed with a rigid planar C3 symmetry truxene core integrated with electron-donating amino groups at peripheral positions. The TRUX-D molecules are employed as effective interfacial layer (IFL) materials between the NiOx and MAPbI3 interface. The incorporation of truxene-based IFLs improves the quality of perovskite crystallinity, minimizes nonradiative recombination, and accelerates charge extraction which has been confirmed by various characterization techniques. As a result, the TRUX-D1 exhibits a maximum PCE of up to 20.8% with an impressive long-term stability. The unencapsulated device retains 98% of their initial performance following 210 days of aging in a glove box and 75.5% for the device after 80 days under ambient air condition with humidity over 40% at 25 °C.
Collapse
Affiliation(s)
- Rajarathinam Ramanujam
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
- Taiwan International Graduate Program, Sustainable Chemical Science and Technology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan, ROC
| | - Hsiang-Lin Hsu
- Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City, 24301, Taiwan, ROC
| | - Zhong-En Shi
- Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City, 24301, Taiwan, ROC
| | - Chien-Yu Lung
- Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City, 24301, Taiwan, ROC
| | - Chin-Han Lee
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | | | - Chih-Ping Chen
- Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City, 24301, Taiwan, ROC
- College of Engineering and Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan, ROC
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| |
Collapse
|
2
|
Xing Z, Li SH, An MW, Yang S. Beyond Planar Structure: Curved π-Conjugated Molecules for High-Performing and Stable Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301662. [PMID: 38169145 DOI: 10.1002/cssc.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Perovskite solar cell (PSC) shows a great potential to become the next-generation photovoltaic technology, which has stimulated researchers to engineer materials and to innovate device architectures for promoting device performance and stability. As the power conversion efficiency (PCE) keeps advancing, the importance of exploring multifunctional materials for the PSCs has been increasingly recognized. Considerable attention has been directed to the design and synthesis of novel organic π-conjugated molecules, particularly the emerging curved ones, which can perform various unmatched functions for PSCs. In this review, the characteristics of three representative such curved π-conjugated molecules (fullerene, corannulene and helicene) and the recent progress concerning the application of these molecules in state-of-the-art PSCs are summarized and discussed holistically. With this discussion, we hope to provide a fresh perspective on the structure-property relation of these unique materials toward high-performance and high-stability PSCs.
Collapse
Affiliation(s)
- Zhou Xing
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, Fujian, China
| | - Shu-Hui Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, Guangxi, China
| | - Ming-Wei An
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), 350007, Fuzhou, Fujian, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, 518055, Shenzhen, Guangdong, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Tejendra B, Rajput SS, Alam MM. A Curious Case of Two-Photon Absorption in n-Helicene and n-Phenylene, n=6-10: Why n=7 is Different? Chemphyschem 2024; 25:e202300710. [PMID: 37936568 DOI: 10.1002/cphc.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
n-Helicenes and n-Phenylenes are interesting examples of twisted molecules, where although the atoms are connected through conjugated π ${\pi }$ -bonds, the π ${\pi }$ -conjugation is largely hindered by the twisted nature of the bonds. Such structures provide a unique opportunity to study the effect of twisted π ${\pi }$ -system on non-linear optical properties. In this work, we studied the two-photon absorption in donor-acceptor substituted n-helicenes and n-phenylenes employing the state-of-the-art RI-CC2 method and reported a unique feature we observed in n=7 systems. We found that both 7-helicene and 7-phenylene systems exhibit largest two-photon absorption than other members in their respective classes. Furthermore, using generalized few-state model, we provided a detailed microscopic mechanism of this unique observation involving participation of different transition dipole moment vectors and their relative orientations.
Collapse
Affiliation(s)
- Banana Tejendra
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg, Chhattisgarh 491001, India
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg, Chhattisgarh 491001, India
| | - M Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg, Chhattisgarh 491001, India
| |
Collapse
|
4
|
Vailassery J, Sun SS. Recent Progress of Helicene Type Hole-Transporting Materials for Perovskite Solar Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020510. [PMID: 36677567 PMCID: PMC9866159 DOI: 10.3390/molecules28020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Perovskite solar cells have emerged as one of the most promising photovoltaic technologies for future clean energy sources to replace fossil fuels. Among the various components in a perovskite solar cell, the hole-transporting materials play significant roles in boosting device performance and stability. Recently, hole-transporting materials with helicene cores have received much attention due to their unique properties and ability to improve the performance and stability of the perovskite solar cells. The focus of this review is on the emerging special class of HTMs based on helicenes for perovskite solar cells. The optical, electrochemical, thermal and photovoltaic properties of helicene-based small molecules as HTMs or interfacial layer materials in n-i-p or p-i-n type perovskite solar cells are summarized. Finally, perspectives for the future development of helicene type hole-transporting materials are provided.
Collapse
Affiliation(s)
- Jijitha Vailassery
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program, Sustainable Chemical Science and Technology, Academia Sinica, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Manda K, kore R, Ambapuram M, Chetty P, Roy S, Jadhav V, S N, gundla R, Mitty R, pola S. D‐A‐π‐A‐D Type Based Benzo‐dithiophene as Core moiety a New Class Hole Transporting Materials for Efficient Perovskite Solar Cells. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kishore Manda
- GITAM University, Hyderabad, Telangana Chemistry INDIA
| | | | - Meenakshamma Ambapuram
- Yogi Vemana University Physics H.No 8/45, Gopalanagaram (Village), Jaladurgum (post)Peapully (Mandal) 518221 Kurnool INDIA
| | | | | | - Vinod Jadhav
- Aragen lifesciences Pvt. Ltd. Chemistry Hyderabad INDIA
| | | | - Rambabu gundla
- GITAM University, Hyderabad, Telangana Chemistry Hyderabad INDIA
| | - Raghavender Mitty
- Yogi Vemana University Physics Dept of PhysicsYogi Vemana Univesity 516005 Kadapa INDIA
| | | |
Collapse
|
7
|
Bracciale MP, Kwon G, Ho D, Kim C, Santarelli ML, Marrocchi A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules 2022; 27:863. [PMID: 35164123 PMCID: PMC8840029 DOI: 10.3390/molecules27030863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.
Collapse
Affiliation(s)
- Maria Paola Bracciale
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Guhyun Kwon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Maria Laura Santarelli
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|