1
|
Togari Y, Ohtani S, Kanao E, Sato K, Mizuno M, Kato K, Mizuta R, Sasaki Y, Ogoshi T. Fluorinated Conjugated Microporous Polymers Based on Pillar[ n]arenes for Removal of Water Pollutants and Their Cation Selective Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69963-69972. [PMID: 39651559 DOI: 10.1021/acsami.4c17877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Organic dyes are widely used in many applications. However, the leakage of organic dyes into the natural environment has become a severe and worldwide problem owing to their high toxicity and nonbiodegradability. Therefore, the development of effective removal technologies for organic dyes is required. In this article, we report the synthesis and adsorption properties of highly fluorinated conjugated microporous polymers based on pillar[n]arenes. The polymers exhibited large Brunauer-Emmett-Teller surface areas of up to 1063 m2 g-1 and selective adsorptive removal of cationic organic dyes from aqueous solutions. Comparison with the nonfluorinated polymers indicated that the adsorption mechanism mainly relies on the fluorine-cation electrostatic interaction. The maximum adsorption capacity reached 313 mg g-1 for crystal violet, which is higher than those of conventional adsorbents. Additionally, the fluorinated polymers could function as proton channels when they were embedded into lipid membranes.
Collapse
Affiliation(s)
- Yuki Togari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eisuke Kanao
- Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kohei Sato
- Department of Chemistry, School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda-shi, Hyogo 669-1330, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- NanoMaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Imbrogno A, Lin HY, Gopalakrishnan A, Minofar B, Schäfer AI. Functionalized composite nanofiber membranes for selective steroid hormone micropollutants uptake from water: Role of cyclodextrin type. WATER RESEARCH 2024; 267:122543. [PMID: 39378729 DOI: 10.1016/j.watres.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Cyclodextrins (CD) entrapped in nanofiber composite membranes are potential selective adsorbing materials to remove steroid hormone (SHs) micropollutants from water. This study aims to elucidate the role of CD macrocyclic host type on the SHs inclusion complexation and uptake in filtration. Three CD types (α, β, and γ) are cross-linked with epichlorohydrin to form polymers (αCDP, βCDP and γCDP) and entrapped into a nanofiber composite membrane by electrospinning. TGA analysis confirmed the CD entrapment into the nanofiber without loss of CD molecules during filtration. The CD type plays a dominant role in controlling the removal of different SHs. A similar removal (range 33 to 50 %) was observed with αCDP, irrespective of the SH type. In contrast, removal and uptake dependent on SH type were observed for β and γCDP, with the highest removal of 74 % for progesterone, followed by estradiol (46 %) and estrone (27 %) and the lowest removal of 3 % for testosterone. Molecular dynamic (MD) simulation revealed a stronger and more stable complex formed with βCDP, as demonstrated by: i) the closer spatial distribution of SH molecules from the βCDP cavity and, ii) the quantum chemistry calculations of the lower de-solvation energy (+6.0 kcal/mol), which facilitates the release of water molecules from interacting interface of CD molecule and hormone. Regarding γCDP, the highest de-solvation energy (+8.3 kcal/mol) poses an energetic barrier, which hinders the formation of the inclusion complex. In the case of αCDP, a higher interaction energy (-8.9 kcal/mol) compared to βCDP (-4.9 kcal/mol) was obtained, despite the broader spatial distribution observed from the MD simulation attributed to a dominant hydrogen bonding interaction with the OH primary groups on the external surface cavity. The findings highlight the relevance of the CD type in designing selective adsorbing membranes for steroid hormone micropollutant uptake. Experimental results and MD simulation suggest that βCD is the most suitable CD type for steroid hormone uptake, due to a more stable and stronger inclusion complexation than α and γCD.
Collapse
Affiliation(s)
- Alessandra Imbrogno
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Han Ya Lin
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Babak Minofar
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, Lodz 90-236, Poland
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
3
|
Cao XM, Zhang AY, Cui WR, Liu LY, Zhang YX, Lin H, Zhang Y. Azo-Linked Porous Polycalix[ n]arenes for the Efficient Removal of Organic Micropollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:957-965. [PMID: 38151466 DOI: 10.1021/acsami.3c18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[n]arenes (n = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants. It was proved that Azo-CX8P was especially efficient in the removal of cationic dyes because of its high negative surface charge. In terms of the adsorption of Rhodamine B with Azo-CX8P, the pseudo-second-order rate constant reaches 5.025 g·mg-1·min-1 with the maximum adsorption capacity being 1345 mg·g-1. These values are significantly higher compared with those recorded for most adsorbents. In addition, the easily prepared Azo-CX8P can be reused at least six times without a loss of the adsorption efficiency, demonstrating its potential use in water purification.
Collapse
Affiliation(s)
- Xiao-Mei Cao
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ai-Ying Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei-Rong Cui
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lu-Yao Liu
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yu-Xuan Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Wang ZQ, Wang X, Yang YW. Pillararene-Based Supramolecular Polymers for Adsorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301721. [PMID: 36938788 DOI: 10.1002/adma.202301721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Supramolecular polymers have attracted increasing attention in recent years due to their perfect combination of supramolecular chemistry and traditional polymer chemistry. The design and synthesis of macrocycles have driven the rapid development of supramolecular chemistry and polymer science. Pillar[n]arenes, a new generation of macrocyclic compounds possessing unique pillar-shaped structures, nano-sized cavities, multi-functionalized groups, and excellent host-guest complexation abilities, are promising candidates to construct supramolecular polymer materials with enhanced properties and functionalities. This review summarizes recent progress in the design and synthesis of pillararene-based supramolecular polymers (PSPs) and illustrates their diverse applications as adsorption and separation materials. All performances are evaluated and analyzed in terms of efficiency, selectivity, and recyclability. Typically, PSPs can be categorized into three typical types according to their topologies, including linear, cross-linked, and hybrid structures. The advances made in the area of functional supramolecular polymeric adsorbents formed by new pillararene derivatives are also described in detail. Finally, the remaining challenges and future perspectives of PSPs for separation-based materials science are discussed. This review will inspire researchers in different fields and stimulate creative designs of supramolecular polymeric materials based on pillararenes and other macrocycles for effective adsorption and separation of a variety of targets.
Collapse
Affiliation(s)
- Zhuo-Qin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Xu G, Yang P, Zhang Y, Sun L, Hu X, Zhang W, Tu Y, Tian Y, Li A, Xie X, Gu X. Porous pillararene-based polymer as adsorbent and solid disinfectant for water treatment. CHEMOSPHERE 2023; 341:140056. [PMID: 37696480 DOI: 10.1016/j.chemosphere.2023.140056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Pillararene polymers have been widely used as excellent adsorbents for water treatment, but pillararene polymers with ultra-high specific surface area and versatility are still rarely reported. Herein, a quaternary ammonium salt modified pillar [5] arene polymer, QPBP [5], with specific surface area of 1844 m2 g-1 was successfully synthesized. Since QPBP [5] has abundant different adsorption sites, it exhibits excellent performance for the simultaneously removal of organic pollutants with different charges from water. The selected three model pollutants, Rhodamine B (RhB, positively charged), Sulfamethazine (SMT, electrically neutral) and Fulvic acid (FA, negatively charged), could be rapidly and efficiently removed from water by QPBP [5] within 10 min, which are much faster than them by most of the reported adsorbents. RhB and SMT are mainly adsorbed through hydrophobic interactions with the QPBP [5] surface, while FA is mainly removed through ion exchange. In addition, QPBP [5] also showed excellent reusability and adsorption performance for the environmentally relevant concentration of pollutants. Furthermore, the quaternary ammonium groups on QPBP [5] makes it a solid disinfectant with excellent antibacterial properties. In conclusion, QPBP [5] is a promising multifunctional adsorbent for the treatment of complex pollutants in water.
Collapse
Affiliation(s)
- Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Pingping Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wenrui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuansong Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, PR China; Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, PR China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Zhang C, Dong J, Zhang P, Sun L, Yang L, Wang W, Zou X, Chen Y, Shang Q, Feng D, Zhu G. Unique fluorophilic pores engineering within porous aromatic frameworks for trace perfluorooctanoic acid removal. Natl Sci Rev 2023; 10:nwad191. [PMID: 37671322 PMCID: PMC10476896 DOI: 10.1093/nsr/nwad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 09/07/2023] Open
Abstract
Perfluorooctanoic acid (PFOA), a representative of per/polyfluorinated alkyl substances, has become a persistent water pollutant of widespread concern due to its biological toxicity and refractory property. In this work, we design and synthesize two porous aromatic frameworks (PAF) of PAF-CF3 and PAF-C2F5 using fluorine-containing alkyl based monomers in tetrahedral geometry. Both PAFs exhibit nanosized pores (∼1.0 nm) of high surface areas (over 800 m2 g-1) and good fluorophilicity. Remarkable adsorption capacity (˃740 mg g-1) and superior efficiency (˃24 g mg-1 h-1) are achieved toward the removal of PFOA with 1 μg L-1 concentration owing to unique C-F···F-C interactions. In particular, PAF-CF3 and PAF-C2F5 are able to reduce the PFOA concentration in water to 37.9 ng L-1 and 43.3 ng L-1, below EPA regulations (70 ng L-1). The reusability and high efficiency give both PAFs a great potential for sewage treatment.
Collapse
Affiliation(s)
- Chi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Liu Yang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Yunning Chen
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Qingkun Shang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Danyang Feng
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| |
Collapse
|
7
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
8
|
Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 53:1289-1309. [DOI: doi.org/10.1080/10643389.2023.2168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yang Li
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Hui Yang
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, P.R. China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| |
Collapse
|
9
|
Zhang Y, Wang Y, Chen T, Han Y, Yan C, Wang J, Lu B, Ma L, Ding Y, Yao Y. Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I and II photodynamic cancer therapy. Chem Commun (Camb) 2023. [PMID: 37314502 DOI: 10.1039/d3cc01929b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
10
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Li Z, Shen Z, Pei Y, Chao S, Pei Z. Covalently bridged pillararene-based polymers: structures, synthesis, and applications. Chem Commun (Camb) 2023; 59:989-1005. [PMID: 36621829 DOI: 10.1039/d2cc05594e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively. In addition, the applications of CBPPs are presented, including selective adsorption and separation, fluorescence sensing and detection, construction of supramolecular gels, anticancer drug delivery, artificial light-harvesting, catalysis, and others. Finally, the current challenging issues and comprehensive prospects of CBPPs are discussed.
Collapse
Affiliation(s)
- Zhanghuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Lin J, Ouyang X, Hu Y, Li G, Zhong Q. Primary amide-functionalized cyclotricatechylene covalent organic frameworks membrane for efficient enrichment of melamine and its derivatives in migration solution of food contact materials. J Sep Sci 2023; 46:e202200862. [PMID: 36680331 DOI: 10.1002/jssc.202200862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
A highly chemically stable primary amide-functionalized cyclotricatechylene covalent organic framework was synthesized by an irreversible reaction and a post-synthetic modification. It possessed a rod-like morphology and exhibited strong solvent stability owing to the polyether bonds. The material showed good adsorption performance for melamine and its derivatives and adsorption mechanism was investigated by molecular simulations. The adsorbent was coated on the nylon-66 membrane to prepare the enrichment membrane. Under optimized conditions, an in-syringe membrane-based extraction method, combined with ultra-high performance liquid chromatography-tandem mass spectrometry was developed for the analysis of melamine and six melamine derivatives in the migration solution. A good linearity was obtained with correlation coefficients ranging from 0.9924 to 0.9995. The limits of detection were 1-200 ng/L and the limits of quantification were 3-500 ng/L. This method was successfully applied to the migration solution of sushi bamboo rolling mats with spiked recoveries of 73.2%-115% and relative standard deviations of 0.9%-9.9%. This work shows a practical and perspective approach for the efficient enrichment of food contact material hazards.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyan Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu Ltd, Guangzhou, P. R. China
| |
Collapse
|
13
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Boosting highly capture of trace tetracycline with a novel water-resistant and magnetic (ZIF-8)-on-(Cu-BTC@Fe3O4) composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Kiruthika J, Arunachalam M. Pillar[5]arene-based cross-linked polymer for the rapid adsorption of iodine from water and vapor phases. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Molecules 2022; 27:molecules27196297. [PMID: 36234834 PMCID: PMC9572897 DOI: 10.3390/molecules27196297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers. Based on the specific polarity properities of the azo groups, the electron-rich aromatic fragments in the hierarchical architecture efficiently capture iodine molecules with an adsorption capacity of 3533.11 mg g−1 (353 wt%) for gaseous iodine and 903.6 mg g−1 (90 wt%) for dissolved iodine. The iodine uptake per specific surface area up to 8.55 wt% m−2 g−1 achieves the highest level among all porous adsorbents. This work illustrates the successful preparation of a new type of porous adsorbent that is expected to be applied in the field of practical iodine adsorption.
Collapse
|
16
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
17
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Lan S, Ling L, Wang S, Ma D. Pillar[5]arene-Integrated Three-Dimensional Framework Polymers for Macrocycle-Induced Size-Selective Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4197-4203. [PMID: 35034438 DOI: 10.1021/acsami.1c21575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Size-selective catalysis is of key importance in the conversion of crude oil or biomass. Here, we fabricate three pillar[5]arene-integrated porous organic polymers with three-dimensional (3D) network structures using 3D cross-linkers. The resulting polymers possess a high surface-to-mass ratio and exhibit exceptional size-selective catalysis in Knoevenagel condensation reactions. In addition, a mechanistic study indicates that the size-selective catalysis is due to the host-guest interaction between pillar[5]arene and substrates. This study suggests that macrocycle-containing polymers could be a promising candidate for size-selective catalysis.
Collapse
Affiliation(s)
- Shang Lan
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang 318000, Zhejiang, China
- Department of Chemistry, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Li Ling
- Department of Chemistry, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang 318000, Zhejiang, China
- Department of Chemistry, Fudan University, 220 Handan Road, 200433 Shanghai, China
| |
Collapse
|
19
|
Liang R, Bu D, Su X, Wei X, Orentas E, Rebek J, Shi Q. Organic pollutants in water-soluble cavitands and capsules: contortions of molecules in nanospace. Org Chem Front 2022. [DOI: 10.1039/d2qo00139j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the binding properties of deep cavitand for various industrial pollutants in water. Depending on the guest type, monomeric cavitands, dimeric capsules or both acted as receptors and...
Collapse
|