1
|
Liu C, Feng Z, Yin T, Wan T, Guan P, Li M, Hu L, Lin CH, Han Z, Xu H, Cheng W, Wu T, Liu G, Zhou Y, Peng S, Wang C, Chu D. Multi-Interface Engineering of MXenes for Self-Powered Wearable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403791. [PMID: 38780429 DOI: 10.1002/adma.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Self-powered wearable devices with integrated energy supply module and sensitive sensors have significantly blossomed for continuous monitoring of human activity and the surrounding environment in healthcare sectors. The emerging of MXene-based materials has brought research upsurge in the fields of energy and electronics, owing to their excellent electrochemical performance, large surface area, superior mechanical performance, and tunable interfacial properties, where their performance can be further boosted via multi-interface engineering. Herein, a comprehensive review of recent progress in MXenes for self-powered wearable devices is discussed from the aspects of multi-interface engineering. The fundamental properties of MXenes including electronic, mechanical, optical, and thermal characteristics are discussed in detail. Different from previous review works on MXenes, multi-interface engineering of MXenes from termination regulation to surface modification and their impact on the performance of materials and energy storage/conversion devices are summarized. Based on the interfacial manipulation strategies, potential applications of MXene-based self-powered wearable devices are outlined. Finally, proposals and perspectives are provided on the current challenges and future directions in MXene-based self-powered wearable devices.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Regenerative Medicine Engineering Joint Laboratory, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yang Zhou
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun Wang
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Wu H, Li S, Yu X. Unleashing the Power of Sn 2S 3 Quantum Dots: Advancing Ultrafast and Ultrastable Sodium/Potassium-Ion Batteries with N, S Co-Doped Carbon Fiber Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311196. [PMID: 38308074 DOI: 10.1002/smll.202311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/04/2024]
Abstract
Tin sulfide (Sn2S3) has been recognized as a potential anode material for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its high theoretical capacities. However, the sluggish ion diffusion kinetics, low conductivity, and severe volume changes during cycling have limited its practical application. In this study, Sn2S3 quantum dots (QDs) (≈1.6 nm) homogeneously embedded in an N, S co-doped carbon fiber network (Sn2S3-CFN) are successfully fabricated by sequential freeze-drying, carbonization, and sulfidation strategies. As anode materials, the Sn2S3-CFN delivers high reversible capacities and excellent rate capability (300.0 mAh g-1 at 10 A g-1 and 250.0 mAh g-1 at 20 A g-1 for SIBs; 165.3 mAh g-1 at 5 A g-1 and 100.0 mAh g-1 at 10 A g-1 for PIBs) and superior long-life cycling capability (279.6 mAh g-1 after 10 000 cycles at 5 A g-1 for SIBs; 166.3 mAh g-1 after 5 000 cycles at 2 A g-1 for PIBs). According to experimental analysis and theoretical calculations, the exceptional performance of the Sn2S3-CFN composite can be attributed to the synergistic effect of the conductive carbon fiber network and the Sn2S3 quantum dots, which contribute to the structural stability, reversible electrochemical reactions, and superior electron transportation and ions diffusion.
Collapse
Affiliation(s)
- Hui Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Shuang Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
- Wanxiang A123 Systems Corporation, Hangzhou, 311215, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Ma Y, Ouyang Y, Liang H, Li P, Shi J, Wu J, Liu S, Chen J, Zhu Y, Wang H. Heterostructured CoS 2/SnS 2 encapsulated in sulfur-doped carbon exhibiting high potassium ion storage capacity. J Colloid Interface Sci 2024; 661:671-680. [PMID: 38310773 DOI: 10.1016/j.jcis.2024.01.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Metallic sulfides are currently considered as ideal anode materials for potassium-ion batteries by virtue of their high specific capacities. However, their low intrinsic electronic conductivity, large volume variation and dissolution of polysulfides in electrochemical reactions hinder their further development toward practical applications. Here, we propose an effective structural design strategy by encapsulating CoS2/SnS2 in sulfur-doped carbon layers, in which internal voids are created to relieve the strain in the CoS2/SnS2 core, while the sulfur-doped carbon layer serves to improve the electron transport and inhibit the dissolution of polysulfides. These features enable the as-designed anode to deliver a high specific capacity (520 mAh/g at 0.1 A/g), a high rate capability (185 mA h g-1 at 10 A/g) and lifespan (0.016 % capacity loss per cycle up to 1500 cycles). Our comprehensive electrochemical characterization reveals that the heterostructure of CoS2/SnS2 not only promotes charge transfer at its interfaces, but also enhances the rate of K+ diffusion. Additionally, potassium-ion capacitors based on this novel anode are able to attain an energy density up to 162 Wh kg-1 and ∼ 96 % capacity retention after 3000 cycles at 10 A/g.The demonstrated design rule combining morphological and structural engineering strategies sheds light on the development of advanced electrodes for high performance potassium-based energy storage devices.
Collapse
Affiliation(s)
- Yu Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujia Ouyang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huanyu Liang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yue Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
5
|
Liang F, Dong H, Dai J, He H, Zhang W, Chen S, Lv D, Liu H, Kim IS, Lai Y, Tang Y, Ge M. Fast Energy Storage of SnS 2 Anode Nanoconfined in Hollow Porous Carbon Nanofibers for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306711. [PMID: 38041500 PMCID: PMC10811495 DOI: 10.1002/advs.202306711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The development of conversion-typed anodes with ultrafast charging and large energy storage is quite challenging due to the sluggish ions/electrons transfer kinetics in bulk materials and fracture of the active materials. Herein, the design of porous carbon nanofibers/SnS2 composite (SnS2 @N-HPCNFs) for high-rate energy storage, where the ultrathin SnS2 nanosheets are nanoconfined in N-doped carbon nanofibers with tunable void spaces, is reported. The highly interconnected carbon nanofibers in three-dimensional (3D) architecture provide a fast electron transfer pathway and alleviate the volume expansion of SnS2 , while their hierarchical porous structure facilitates rapid ion diffusion. Specifically, the anode delivers a remarkable specific capacity of 1935.50 mAh g-1 at 0.1 C and excellent rate capability up to 30 C with a specific capacity of 289.60 mAh g-1 . Meanwhile, at a high rate of 20 C, the electrode displays a high capacity retention of 84% after 3000 cycles and a long cycle life of 10 000 cycles. This work provides a deep insight into the construction of electrodes with high ionic/electronic conductivity for fast-charging energy storage devices.
Collapse
Affiliation(s)
- Fanghua Liang
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
- Faculty of Textile Science and TechnologyShinshu UniversityTokida 3‐15‐1UedaNagano386‐8567Japan
| | - Huilong Dong
- School of Materials EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
| | - Jiamu Dai
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Honggang He
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Wei Zhang
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| | - Dong Lv
- Department of Biomedical SciencesCity University of Hong KongHong Kong999077P. R. China
| | - Hui Liu
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
| | - Ick Soo Kim
- Faculty of Textile Science and TechnologyShinshu UniversityTokida 3‐15‐1UedaNagano386‐8567Japan
| | - Yuekun Lai
- College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Yuxin Tang
- College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Mingzheng Ge
- School of Textile & ClothingNantong UniversityNantong226019P. R. China
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| |
Collapse
|
6
|
Wu H, Li S, Yu X. Structural engineering of SnS quantum dots embedded in N, S Co-Doped carbon fiber network for ultrafast and ultrastable sodium/potassium-ion storage. J Colloid Interface Sci 2024; 653:267-276. [PMID: 37716306 DOI: 10.1016/j.jcis.2023.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Tin sulfides have received significant attention as potential candidates for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to their abundance, high theoretical capacity, and favorable working potential. However, the inherent drawbacks such as slow kinetics, low intrinsic electronic conductivity, and significant volume change during cycling, have not been adequately addressed. In this study, we propose a rational and effective approach to simultaneously overcome these challenges by embedding stannous sulfide (SnS) quantum dots (QDs) within a crosslinked nitrogen (N) and sulfur (S) co-doped carbon fiber network (SnS-CFN). The well-dispersed and densely packed SnS QDs, measuring approximately 2 nm, not only minimize the diffusion distance of Na+/K+ ions but also buffer the volume expansion effectively. The N, S co-doped carbon fiber network in SnS-CFN serves as a highly conductive and stable support structure that inhibits SnS QDs aggregation, creates ion/electron transport channels, and alleviates volume variations. Density functional theory (DFT) calculations further confirm that the combination of SnS QDs and the N, S co-doped carbon effectively reduces the adsorbed energies in the interlayer of SnS-CFN. These advantages synergistically contribute to the exceptional sodium/potassium storage performance of the SnS-CFN composite. Consequently, SnS-CFN demonstrates exceptional cyclability, retaining a capacity of 251.5 mAh/g over 10,000 cycles, and exhibits excellent rate capability (299.5 mAh/g at 20 A/g) when employed in SIBs. When used in PIBs, a high capacity of 112.3 mAh/g at 2 A/g after 1000 cycles, a remarkable capacity of 51.4 mAh/g at 5 A/g after 10,000 cycles, and a remarkable rate capability with a specific capacity of 55.5 mAh/g at a high current density of 20 A/g have been achieved.
Collapse
Affiliation(s)
- Hui Wu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Shuang Li
- Department of Materials Science, Fudan University, Shanghai 200433, China; Wanxiang A123 Systems Corporation, Hangzhou 311215, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Zhang Y, Ni G, Li Y, Xu C, Li D, Liu B, Zhang X, Huo P. Recent advances and promise of MXene-based composites as electrode materials for sodium-ion and potassium-ion batteries. Dalton Trans 2023; 53:15-32. [PMID: 38018446 DOI: 10.1039/d3dt03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
With the increasing demand for sustainable energy and concerns about the scarcity of lithium resources, sodium and potassium ion batteries have emerged as promising alternative energy storage technologies. MXene, as a novel two-dimensional material, possesses exceptional electrical conductivity, high surface area, and tunable structural features that make it an ideal candidate for high-performance electrode materials. However, its limited theoretical capacity hinders its widespread application. To overcome this limitation, MXene has been combined with other materials through synergistic effects between different components to enhance the overall electrochemical performance and expand its application in sodium/potassium ion batteries. Recently, substantial advancements have been realized in the exploration of MXene-based composites as energy storage materials, encompassing their synthesis, design, and the comprehension of charge storage mechanisms. This paper aims to propose a comprehensive summary of the latest developments in MXene-based composites as electrode materials for sodium ion batteries and potassium ion batteries, with a particular emphasis on the enhanced physicochemical properties resulting from composite formation. Moreover, the challenges faced by MXene materials in sodium ion batteries and potassium ion batteries are thoroughly discussed, and future research directions to further advance this field are proposed.
Collapse
Affiliation(s)
- Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guoxu Ni
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
8
|
Noor U, Mughal MF, Ahmed T, Farid MF, Ammar M, Kulsum U, Saleem A, Naeem M, Khan A, Sharif A, Waqar K. Synthesis and applications of MXene-based composites: a review. NANOTECHNOLOGY 2023; 34:262001. [PMID: 36972572 DOI: 10.1088/1361-6528/acc7a8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.
Collapse
Affiliation(s)
- Umar Noor
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Mughal
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University Islamabad, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan
| | - Umme Kulsum
- Department of Chemistry, Aligarh Muslim University, 202002, Aligarh, India
| | - Amna Saleem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Mahnoor Naeem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Aqsa Khan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
9
|
Wang Y, Li J, Song P, Yang J, Gu Z, Wang T, Wang C. In-situ decoration of tin sulfide on Niobium carbide MXene with robust electronic coupling for improved sodium storage performance. J Colloid Interface Sci 2023; 636:255-266. [PMID: 36634395 DOI: 10.1016/j.jcis.2023.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Tin sulfide (SnS) has been considered as one of the most promising sodium storage materials because of its excellent electrochemical activity, low cost, and low-dimensional structure. However, owing to the serious volume change upon discharging/charging and poor electronic conductivity, the SnS-based electrodes often suffer from electrode pulverization and sluggish reaction kinetics, thus resulting in serious capacity fading and degraded rate capability. In this work, SnS nanoparticles uniformly distributed on the surface of the layered Niobium carbide MXene (SnS/Nb2CTx) were fabricated through a facile solvothermal approach followed by calcination, endowing the SnS/Nb2CTx with a three-dimensional interconnected framework as well as fast charge transfer. Benefitting from the excellent electronic/ionic conductivity, efficient buffering matrix, abundant active sites, and high sodium storage activity inherited from the structure design, the robust electronic coupling between SnS nanoparticle and Nb2CTx MXene results in excellent electrochemical output, which demonstrates superior reversible capacities of 479.6 (0.1 A/g up to 100 cycles) and 278.9 mAh/g (0.5 A/g up to 500 cycles) upon sodium storage, respectively. The excellent electrochemical performance manifests the promise of the combination of metal sulfides with Nb2CTx MXene to fabricate high-performance electrodes for sodium storage.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Penghao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Zhihao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
10
|
Cai J, Liu C, Tao S, Cao Z, Song Z, Xiao X, Deng W, Hou H, Ji X. MOFs-derived advanced heterostructure electrodes for energy storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Zhu Q, Li W, Wu J, Tian N, Li Y, Yang J, Liu B. Filling Selenium into Sulfur Vacancies in Ultrathin Tungsten Sulfide Nanosheets for Superior Potassium Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51994-52006. [PMID: 36349939 DOI: 10.1021/acsami.2c16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of WS2 as an anode for potassium-ion batteries (PIBs) is severely confined by the low K+ storage capacity and poor intrinsic electrical conductivity. Our previous study demonstrated that the creation of sulfur vacancies (VS) in WS2 can enhance its K+ storage capability. However, it is a big challenge to keep the stability of VS while reserving the excellent activity. Herein, we design Se-filled WS2 nanosheets with VS (VS-WS2-Se NS) for PIBs. The Se heteroatom filling into the VS can not only stabilize and activate them, rendering more active sites to adsorb K+, but also further enhance the electrical conductivity. Consequently, the VS-WS2-Se NS anode presents significantly promoted storage capacity and reaction kinetics, superior to the pristine WS2 and WS2 with only VS. Remarkably, the VS-WS2-Se NS anode exhibits the highest specific capacity of 363.9 mA h g-1 at 0.05 A g-1. Simultaneously, a high reversible capacity of 144.2 mA h g-1 after 100 cycles at 2.0 A g-1 is shown. Ex situ analyses demonstrated that the potassium storage mechanism involves the intercalation and conversion reaction between WS2 and K+. Moreover, DFT calculations revealed that the Se filling into VS can further enhance the electrical conductivity and reduce the K-insertion energy barriers of WS2 and thus account for the outstanding electrochemical performance. This study demonstrates that engineering the vacancies by the heteroatom filling strategy offers a novel and feasible route for designing high-performance electrode materials in various energy-storage systems.
Collapse
Affiliation(s)
- Qing Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| | - Wenhao Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| | - Jinxin Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| | - Ningchen Tian
- Nation Quality Supervision and Inspection Center of Graphite Products, Chenzhou423000, P. R. China
| | - Yanwei Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| | - Jianwen Yang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| | - Botian Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin541004, P. R. China
| |
Collapse
|
12
|
Deng L, Yuan J, Xie S, Huang H, Yue R, Xu J. A novel Pd-Fe3O4/PEDOT:PSS/nitrogen and sulfur doped-Ti3C2Tx frameworks as highly sensitive sensing platform toward parathion-methyl residue in nature. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Xu Y, Li J, Sun J, Duan L, Xu J, Sun D, Zhou X. Implantation of Fe 7S 8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. J Colloid Interface Sci 2022; 615:840-848. [PMID: 35182854 DOI: 10.1016/j.jcis.2022.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
As a desirable candidate for lithium-ion batteries, potassium-ion batteries (PIBs) have aroused great interest because of their low cost and high power and energy densities. However, the insertion/extraction of K+ with a large radius (1.38 Å) usually bring about the destruction of the electrode materials. Here, ultrafine Fe7S8 nanocrystals are successfully implanted into hollow carbon nanospheres (Fe7S8@HCSs) via a facile solvothermal method and subsequent novel low-temperature sulfurization, which avoid the aggregation of Fe7S8 nanoparticles produced during high-temperature sulfidation. The ultrafine Fe7S8 nanoparticles and hollow carbon spheres can not only buffer the severe expansion/shrinkage of electrode materials caused by the repeated insertion/extraction of K+, but also provide additional accessible pathways for the high-rate K+ transmission. When tested as an anode material for PIBs, Fe7S8@HCSs achieve impressive K+ storage capacity of 523.2 mAh g-1 at 0.1 A g-1 after 100 cycles and remarkable rate capacity of 176.3 mAh g-1 at 5 A g-1. Further, assembling this anode with a K2NiFe(CN)6 cathode yields stable cycling performance, revealing its great potential for large-scale energy storage applications.
Collapse
Affiliation(s)
- Yifan Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianbo Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianlu Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liping Duan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianzhi Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaosi Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
14
|
Liu H, He Y, Zhang H, Wang S, Cao K, Jiang Y, Liu X, Jing QS. Heterostructure engineering of ultrathin SnS 2/Ti 3C 2T x nanosheets for high-performance potassium-ion batteries. J Colloid Interface Sci 2022; 606:167-176. [PMID: 34388569 DOI: 10.1016/j.jcis.2021.07.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Layered metal sulfides are considered as promising candidates for potassium ion batteries (KIBs) owing to the unique interlayer passages for ion diffusion. However, the insufficient electronic conductivity, inevitable volume expansion, and sulfur loss hinder the promotion of K-ion storage performance. Herein, few-layered Ti3C2Tx nanosheets were selected as the multi-functional substrate for cooperating few-layered SnS2 nanosheets, constructing SnS2/Ti3C2Tx hetero-structural nanosheets (HNs) with the thickness as thin as about 5 nm. In this configuration, the formed Ti-S bonds provide robust interaction between SnS2 and Ti3C2Tx nanosheets, which hinders the agglomeration of SnS2 and the restack of Ti3C2Tx, endowing the hybrid material with robust nanostructure. Thus, the shortcomings of the SnS2 anode are muchly relieved. In this way, the as-prepared SnS2/Ti3C2Tx HNs electrode delivers reversible capacities of 462.1 mAh g-1 at 0.1 A g-1 and 166.1 mAh g-1 at 2.0 A g-1, respectively, and a capacity of 85.5 mAh g-1 is remained even after 460 cycles at 2.0 A g-1. These results are superior to those of the counterpart electrode, confirming aggressive promotion of K-ion storage performance of SnS2 anode brought by the cooperation of Ti3C2Tx, and presenting a reliable strategy to improve the electrochemical performance of sulfide anodes.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Yanan He
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Shaodan Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Yong Jiang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Xiaogang Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Qiang-Shan Jing
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|