1
|
Deng WC, Qian HL, Yang C, Xu ST, Yan XP. Tuning interlayer stacking of 2D covalent organic frameworks for high-resolution separation of C8 aromatic isomers. Talanta 2025; 282:127012. [PMID: 39406079 DOI: 10.1016/j.talanta.2024.127012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) has shown great potential as stationary phase in gas chromatography separation. However, designing COF stationary phases with high separation performance remains challenging. Here, we report a novel strategy to enhance the separation ability of COF stationary phases through tuning the interlayer stacking of COF. A rare interlayer modulation of 2D COFs from eclipsed-AA to slipped-AA was achieved through a two-step synthesis method. Simply changing the solvent used in step 1 allowed an interlayer modulation from slipped-AA to eclipsed-AA. As the proof-of-concept, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin (Tph) and 2,5-dihydroxyterephthalaldehyde (DHTA) were condensed to prepare 2D COF Tph-DHTA. The interlayer stacking of the 2D COF Tph-DHTA was tuned from eclipsed-AA model to slipped-AA by changing the solvent from o-dichlorobenzene + n-butanol (3:1, v/v) to tetrahydrofuran + n-butanol (1:7, v/v) in step 1. The as-prepared Tph-DHTA with slipped-AA stacking (s-Tph-DHTA) showed higher resolution and faster separation of C8 aromatic isomers than that with eclipsed-AA stacking (e-Tph-DHTA). The formation of slipping stacking of s-Tph-DHTA facilitated the thermodynamics, but did not affect the mass transfer resistance for the separation of C8 aromatic isomers. This work not only provides a promising way to modulate the stacking structure of COFs, but also opens a new strategy to design COF stationary phases for the separation of intractable isomers.
Collapse
Affiliation(s)
- Wen-Chao Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Xiong J, Li X, Chen M, Shi Q, Jiang Y, Feng Y, Zhang B. Influence of Configurational Isomerism of Pyridine π Bridge in Donor-π Bridge-Acceptor Type Covalent Triazine Frameworks on The Photocatalytic Performance. Chem Asian J 2024; 19:e202400556. [PMID: 38937267 DOI: 10.1002/asia.202400556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Covalent triazine frameworks (CTFs) involving a donor-π bridge-acceptor (D-π-A) structure are considered one of the most promising photocatalytic materials, in which the π bridge is known to play an important role in influencing the photocatalytic performance. So far, much effort has been directed at the designing of the different π bridge structure to facilitate the photo-induced charge separation. However, the orientation of the π bridge units (configurational isomerism) has not been considered. In this paper, a pair of pyridine-bridged D-π-A type CTFs, named TFA-P1-CTF and TFA-P2-CTF, were designed to investigate how the orientation of the π bridge would influence their performance in the photocatalytic oxidation of olefins into carbonyl compounds. Interestingly, due to the superior charge separation capability, TFA-P2-CTF was found to be able to catalyze the reaction more efficiently than TFA-P1-CTF. Our study eventually provided a guide for the design of D-π-A type CTFs as high-performance photocatalytic materials via tuning the configurational isomerism of the π bridge unit for use in chemical transformations.
Collapse
Affiliation(s)
- Ji Xiong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Xiangyu Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Minghui Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Quan Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Yu Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong Province, 522000, P. R. China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, PR China
| |
Collapse
|
3
|
Du L, Li X, Lu X, Guo Y. The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173478. [PMID: 38815828 DOI: 10.1016/j.scitotenv.2024.173478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Covalent organic frameworks (COFs) are a novel type of porous materials, with unique properties, such as large specific surface areas, high porosity, pronounced crystallinity, tunable pore sizes, and easy functionalization, and thus have received considerable attention in recent years. COFs play an essential role in the catalytic degradation, adsorption, and separation of heavy metals, radionuclides. In recent years, considering several outstanding characteristics of COFs, including their good thermal/chemical stability, high crystallinity, and remarkable adsorption capacity, they have been widely used in the removal of various environment pollutants. This review primarily discusses the synthesis strategies of COFs along with their diverse synthesis methods, and provides a comprehensive summary and analysis of recent research advances in the use of COFs for removing heavy metal ions and radionuclides from water bodies. Additionally, the adsorption mechanism of COFs with regard to metal ions was determined by analyzing the structural characteristics of COFs. Finally, the future research directions on COFs adsorb rare earth element was discussed.
Collapse
Affiliation(s)
- Lili Du
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Winter A, Hamdi F, Eichhöfer A, Saalwächter K, Kastritis PL, Haase F. Enhancing structural control in covalent organic frameworks through steric interaction-driven linker design. Chem Sci 2024; 15:d4sc03461a. [PMID: 39165733 PMCID: PMC11331305 DOI: 10.1039/d4sc03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Covalent Organic Frameworks (COFs) exhibiting kagome (kgm) structures are promising crystalline porous materials with two distinct pores. However, there are no reliable synthetic methods to exclusively target the kgm over the polymorphic square-lattice (sql) structure. To address this, we introduce a linker design strategy featuring bulky functional groups, which through steric interactions can hinder the sql net formation, thereby leading to a kgm structure. By rigid attachment of the methyl benzoate groups to a tetradentate COF linker, steric interactions with neighbouring linkers depending on the pore size become possible. The steric interaction was tuned by varying the complementary bidentate linear linker lengths, where the shorter phenylenediamine linker leads to steric hindrance and the formation of the kgm lattice, while with the longer benzidine linker, steric interaction is reduced leading to the sql lattice. Thus, control over the net can be exerted through steric interaction strengths. Additionally, structural analysis revealed the formation of the kgm COF with an unusual ABC stacking, leading to pearl string type pores instead of two distinct pore sizes. This COF system shows that steric interaction-driven design enhances control over COF structures, expanding the design toolbox, but also provides valuable insights into network formation and polymorphism.
Collapse
Affiliation(s)
- Alena Winter
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg Halle/Saale Germany
| | - Farzad Hamdi
- Department of Integrative Structural Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle/Saale Germany
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center & Biozentrum, Martin Luther University Halle-Wittenberg Halle/Saale Germany
| | - Andreas Eichhöfer
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Kay Saalwächter
- Institute of Physics, Martin-Luther-Universität Halle-Wittenberg Halle/Saale Germany
| | - Panagiotis L Kastritis
- Department of Integrative Structural Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle/Saale Germany
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center & Biozentrum, Martin Luther University Halle-Wittenberg Halle/Saale Germany
- Institute of Chemical Biology, National Hellenic Research Foundation Athens Greece
| | - Frederik Haase
- Institute of Chemistry, Faculty of Natural Sciences II, Martin-Luther-Universität Halle-Wittenberg Halle/Saale Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Xu H, Xia S, Li C, Li Y, Xing W, Jiang Y, Chen X. Programming Tetrathiafulvalene-Based Covalent Organic Frameworks for Promoted Photoinduced Molecular Oxygen Activation. Angew Chem Int Ed Engl 2024; 63:e202405476. [PMID: 38706228 DOI: 10.1002/anie.202405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Despite the pivotal role of molecular oxygen (O2) activation in artificial photosynthesis, the activation efficiency is often restricted by sluggish exciton dissociation and charge transfer kinetics within polymer photocatalysts. Herein, we propose two tetrathiafulvalene (TTF)-based imine-linked covalent organic frameworks (COFs) with tailored donor-acceptor (D-A) structures, TTF-PDI-COF and TTF-TFPP-COF, to promote O2 activation. Because of enhanced electron push-pull interactions that facilitated charge separation and transfer behavior, TTF-PDI-COF exhibited superior photocatalytic activity in electron-induced O2 activation reactions over TTF-TFPP-COF under visible light irradiation, including the photosynthesis of (E)-3-amino-2-thiocyano-α,β-unsaturated compounds and H2O2. These findings highlight the significant potential of the rational design of COFs with D-A configurations as suitable candidates for advanced photocatalytic applications.
Collapse
Affiliation(s)
- Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuling Xia
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chunlei Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
6
|
Fang Y, Liu Y, Huang H, Sun J, Hong J, Zhang F, Wei X, Gao W, Shao M, Guo Y, Tang Q, Liu Y. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat Commun 2024; 15:4856. [PMID: 38849337 PMCID: PMC11161580 DOI: 10.1038/s41467-024-49036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Developing highly active materials that efficiently utilize solar spectra is crucial for photocatalysis, but still remains a challenge. Here, we report a new donor-acceptor (D-A) covalent organic framework (COF) with a wide absorption range from 200 nm to 900 nm (ultraviolet-visible-near infrared light). We find that the thiophene functional group is accurately introduced into the electron acceptor units of TpDPP-Py (TpDPP: 5,5'-(2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo [3,4-c]pyrrole-1,4-diyl)bis(thiophene-2-carbaldehyde), Py: 1,3,6,8-tetrakis(4-aminophenyl)pyrene) COFs not only significantly extends its spectral absorption capacity but also endows them with two-photon and three-photon absorption effects, greatly enhancing the utilization rate of sunlight. The selective coupling of benzylamine as the target reactant is used to assess the photocatalytic activity of TpDPP-Py COFs, showing high photocatalytic conversion of 99% and selectivity of 98% in 20 min. Additionally, the TpDPP-Py COFs also exhibit the universality of photocatalytic selective coupling of other imine derivatives with ~100% conversion efficiency. Overall, this work brings a significant strategy for developing COFs with a wide absorption range to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Yuanding Fang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaxing Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
7
|
Guo C, Huang X, Huang J, Tian X, Chen Y, Feng W, Zhou J, Li Q, Chen Y, Li SL, Lan YQ. Zigzag Hopping Site Embedded Covalent Organic Frameworks Coating for Zn Anode. Angew Chem Int Ed Engl 2024; 63:e202403918. [PMID: 38519423 DOI: 10.1002/anie.202403918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xin Huang
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Jianlin Huang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Xi Tian
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yuting Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Wenhai Feng
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jie Zhou
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- School of Chemistry and Materials Science, Nanjing Normal University, South China Normal University, 210023, Nanjing, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
8
|
Sang R, Hu Y, Shen Z, Zhao G, Yue J, Huang X. Low-temperature synthesis of porous organic polymers with donor-acceptor structure and β-ketoenamine for photocatalytic oxidative coupling of amines. NANOSCALE 2024. [PMID: 38625409 DOI: 10.1039/d4nr00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In light of the widespread use of fossil fuels and the resulting environmental pollution, it is crucial to develop efficient photocatalysts for renewable energy applications that utilize visible light. Organic photocatalysts based on β-ketoenamine offer several advantages, including facile preparation, high stability, structural controllability, and excellent photovoltaic properties. However, in previous studies, the synthesis of porous organic polymers (POPs) often involved long, high-temperature processes. In this study, POPs with donor (D)-acceptor (A) structure were constructed by utilizing various branched bridging groups and 2,4,6-triformylphloroglucinol, across multiple temperature gradients. Through adjustments in hydrothermal temperature, we successfully synthesized a series of POPs with varying enol-keto structure ratios. Among these POPs, the dimethoxybenzidine-POPs (DMDPOPs) with methoxy electron-rich branched chains exhibited superior photovoltaic performance, electron transfer rate, and photocatalytic activity compared to the dihydroxybenzidine-POPs (DHDPOPs) with electron-deficient hydroxyl branched chains. Notably, DMDPOP-30 demonstrated outstanding performance, achieving a conversion rate of 98% within 3 h. Additionally, other POPs exhibited favorable conversions (90%), further confirming the feasibility of this synthetic approach. Moreover, the synthesis of DMDPOP-30 was achieved under mild conditions at room temperature, highlighting its significant potential for practical applications.
Collapse
Affiliation(s)
- Rusong Sang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
- State Key Laboratory of Multi Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yezi Hu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Zewen Shen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Guixia Zhao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Junrong Yue
- State Key Laboratory of Multi Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xiubing Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
9
|
Wu X, Tang X, Zhang K, Harrod C, Li R, Wu J, Yang X, Zheng S, Fan J, Zhang W, Li X, Cai S. Tuning the Topology of Two-Dimensional Covalent Organic Frameworks through Site-Selective Synthetic Strategy. Chemistry 2024; 30:e202303781. [PMID: 38196025 DOI: 10.1002/chem.202303781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.
Collapse
Affiliation(s)
- Xueying Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chelsea Harrod
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Rui Li
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xi Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| |
Collapse
|
10
|
Geng L, Sun X, Wang L, Liu F, Hu S, Zhao S, Ye F. Analyte-induced laccase-mimicking activity inhibition and conductivity enhancement of electroactive nanozymes for ratiometric electrochemical detection of thiram. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132936. [PMID: 37948782 DOI: 10.1016/j.jhazmat.2023.132936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Most nanozyme-based electrochemical sensing strategies depend on the catalytic formation of electroactive substances, while the electrochemical properties of nanozymes have rarely been explored. In this study, magnetic nanoparticles encapsulated metal-organic framework served as precursors to prepare bioinspired nanozymes with both laccase-mimicking activity and electroactivity. Owing to the strong affinity between thiram (THR) and Cu(II) active sites in the nanozymes, the binding of THR inhibited nanozyme catalytic activity toward catechol (CT) oxidation and enhanced nanozyme conductivity. A lower oxidation current (ICT) of CT was accompanied by a higher oxidation signal (ICu) of Cu(II), allowing a ratiometric electrochemical response of the electroactive nanozymes toward the incoming THR. The signal ratio (ICu/ICT) displayed a good linear relationship over a THR concentration range of 10.0 nM-3.0 μM with a limit of detection of 0.15 nM, and the entire THR detection process was rapidly accomplished within 5 min. The high sensitivity and selectivity of the developed electrochemical strategy guaranteed the reliable detection of THR in fruit, vegetable, and river water samples. This study provides new insights into the development of nanozymes for electrochemical analysis.
Collapse
Affiliation(s)
- Lianguo Geng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xingdi Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liuding Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fengping Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
11
|
You PY, Mo KM, Wang YM, Gao Q, Lin XC, Lin JT, Xie M, Wei RJ, Ning GH, Li D. Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity and photocatalytic activity. Nat Commun 2024; 15:194. [PMID: 38172097 PMCID: PMC10764794 DOI: 10.1038/s41467-023-44552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The properties of two-dimensional covalent organic frameworks (2D COFs), including porosity, catalytic activity as well as electronic and optical properties, are greatly affected by their interlayer stacking structures. However, the precise control of their interlayer stacking mode, especially in a reversible fashion, is a long-standing and challenging pursuit. Herein, we prepare three 2D copper-organic frameworks, namely JNM-n (n = 7, 8, and 9). Interestingly, the reversible interlayer sliding between eclipsed AA stacking (i.e., JNM-7-AA and JNM-8-AA) and staggered ABC stacking (i.e., JNM-7-ABC and JNM-8-ABC) can be achieved through environmental stimulation, which endows reversible encapsulation and release of lipase. Importantly, JNM-7-AA and JNM-8-AA exhibit a broader light absorption range, higher charge-separation efficiency, and higher photocatalytic activity for sensitizing O2 to 1O2 and O2•- than their ABC stacking isostructures. Consequently, JNM-8-AA deliver significantly enhanced photocatalytic activities for oxidative cross-coupling reactions compared to JNM-8-ABC and other reported homogeneous and heterogeneous catalysts.
Collapse
Affiliation(s)
- Pei-Ye You
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Kai-Ming Mo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Qiang Gao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China
| | - Xiao-Chun Lin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Tong Lin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China.
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
12
|
Pang Y, Wang B, Gu X, Shen H, Yan X, Li Y, Chen L. Hydroxy-Rich Covalent Organic Framework for the Efficient Catalysis of the Cycloaddition of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16721-16730. [PMID: 37967303 DOI: 10.1021/acs.langmuir.3c01719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The cycloaddition of CO2 with epoxides to cyclic carbonates is one of the most promising and green pathways for CO2 utilization, and the development of highly efficient catalysts remains a challenge. In this work, a novel hydroxy-rich covalent organic framework (TFPB-DHBD-COF) was synthesized, and it served as an efficient heterogeneous catalyst for the reaction of CO2 with 1,2-epoxybutane under mild conditions, providing the desired products in 90% conversion. The abundant hydroxy groups in the pore channels of TFPB-DHBD-COF could not only activate epoxides and CO2 via hydrogen bonding but also obviously enhance its stability through intramolecular five-membered ring hydrogen bonding. Thus, this COF also exhibited outstanding stability and tolerance for diverse substrates. Undoubtedly, this work has enriched the application of tailored COFs in the activation and utilization of CO2.
Collapse
Affiliation(s)
- Yiying Pang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xiaoyi Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Huawei Shen
- Shaoxing Xingxin New Materials Co., Ltd., Shaoxing 312300, Zhejiang, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
13
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Pelkowski CE, Natraj A, Malliakas CD, Burke DW, Bardot MI, Wang Z, Li H, Dichtel WR. Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions. J Am Chem Soc 2023; 145:21798-21806. [PMID: 37773640 DOI: 10.1021/jacs.3c03868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C1 COF) to 11 carbons (C11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C5 COF and then decreasing as chain length is extended through C11 COF. Counterintuitively, shorter chains (C2-C4) give rise to lower yields of weakly crystalline materials, while longer chains (C6-C9) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.
Collapse
Affiliation(s)
- Chloe E Pelkowski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anusree Natraj
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David W Burke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madison I Bardot
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zixiao Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - Haoyuan Li
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Liang L, Jiang Y, Liu F, Li S, Wu J, Zhao S, Ye F. Three-in-one covalent organic framework nanozyme: Self-reporting, self-correcting and light-responsive for fluorescence sensing 3-nitrotyrosine. Biosens Bioelectron 2023; 237:115542. [PMID: 37481867 DOI: 10.1016/j.bios.2023.115542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Most current redox-type nanozyme-based colorimetric sensing platforms are susceptible to interference from the reductant when using chromogenic probe, and the unstable H2O2 used in the peroxidase-like nanozyme-based systems is prone to difficulty in sensing signal reproducibility, while peroxidase-like nanozyme with oxidase-mimicking activity is easy to bring background interference by O2. Since the strong structural designability of covalent organic frameworks (COFs) endows them great application value in the sensing fields, therefore, we envision the construction a COF oxidase-like nanozyme-based controllable sensing system that integrates self-reporting, self-correcting and light-responsive functions to avoid these affects. Herein, 3-nitrotyrosine (3-NT) biomarker was selected as model analyte. 1,3,5-triformylphloroglucinol (Tp) and 3,6-diaminoacridine (DA) were acted as building monomers of the multifunctional COF nanozyme (termed as TpDA). Owing to the excellent light-responsive oxidase-mimicking property of TpDA, 3-NT can be efficiently oxidized, the inner filter effect (IFE) between TpDA and the 3-NT oxidation product greatly quenches the intrinsic fluorescence of TpDA, making it a controllable self-reporting system for fluorescence turn-off sensing 3-NT. Additionally, the excessive reactive oxygen species (ROS) that generated continuously during photocatalysis can resist the interference of endogenous reductants. This study not only provides new insights to avoid the interference of H2O2, background and reductants from conventional redox-type nanozyme-based colorimetric systems but also opens avenues to rational construct versatile COF nanozyme-based sensor.
Collapse
Affiliation(s)
- Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Yuting Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Fengping Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Jia Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
16
|
Zheng C, Zhang S, Li Z, Xiao L, Song M, Du J, Guo J, Gao X, Peng Y, Tang Z, Zhao M. Single Site Coordination Enabled Construction of Metal-Diketimine-Linked Covalent Organic Frameworks for Boosted Electrooxidation of Biomass Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301331. [PMID: 37156745 DOI: 10.1002/smll.202301331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/02/2023] [Indexed: 05/10/2023]
Abstract
Aromatic aldehydes are widely used for the construction of covalent organic frameworks (COFs). However, due to the high flexibility, high steric hindrance, and low reactivity, it remains challenging to synthesize COFs using ketones as building units, especially the highly flexible aliphatic ones. Here, the single nickel site coordination strategy is reported to lock the configurations of the highly flexible diketimine to transform discrete oligomers or amorphous polymers into highly crystalline nickel-diketimine-linked COFs (named as Ni-DKI-COFs). The strategy has been successfully extended to the synthesis of a series of Ni-DKI-COFs by the condensation of three flexible diketones with two tridentate amines. Thanks to the ABC stacking model with high amount and easily accessible single nickel (II) sites on their 1D channels, Ni-DKI-COFs are exploited as well-defined electrocatalyst platforms for efficiently electro-upgrading biomass-derived 5-Hydroxymethylfurfural (HMF) into value-added 2,5-furandicarboxylic acid (FDCA) with a 99.9% yield and a 99.5% faradaic efficiency as well as a high turnover frequency of 0.31 s-1 .
Collapse
Affiliation(s)
- Chaoyang Zheng
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Shun Zhang
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhixi Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Liyun Xiao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Meina Song
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiting Zhao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| |
Collapse
|
17
|
Paul R, Kalita P, Dao DQ, Mondal I, Boro B, Mondal J. Linker Independent Regioselective Protonation Triggered Detoxification of Sulfur Mustards with Smart Porous Organic Photopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302045. [PMID: 37165579 DOI: 10.1002/smll.202302045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Indexed: 05/12/2023]
Abstract
The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants. Time-resolved-photoluminescence (TRPL) study reveals the protonation effect in the polymeric backbone by significantly enhancing the life span of photoexcited electrons. In terms of catalytic performance, TPA-Ionic outperformed TPD-Ionic because of its enhanced excitons formation and charge carrier abilities caused by the donor-acceptor (D-A) backbone and protonation effects. Moreover, the formation of singlet oxygen (1 O2 ) species is confirmed via in-situ Electron Spin Resonance (ESR) spectroscopy and density functional theory (DFT) analysis, which explained the crucial role of solvents in the reaction medium to regulate the (1 O2 ) formation. This study creates a new avenue for developing novel porous photocatalysts and highlights the crucial roles of sacrificial electron donors and solvents in the reaction medium to establish the structure-activity relationship.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Kalita
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Indranil Mondal
- Department of Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
18
|
Wang Y, Zhao L, Liu S, Ji G, He C, Tang Y, Duan C. Mixed-Component Metal-Organic Framework for Boosting Synergistic Photoactivation of C(sp 3)-H and Oxygen. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16744-16754. [PMID: 36943723 DOI: 10.1021/acsami.2c23245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synergistic catalysis is an efficient and powerful strategy for simultaneously activating reactants by multiple active sites to promote the efficiency of difficult and challenging catalytic reactions. Meanwhile, enzymes with multi-active-site synergistic catalytic properties possessing high efficiency and high selectivity have become the goal pursued in the field of catalytic chemistry in recent years. Metal-organic frameworks (MOFs), as an effective heterogeneous catalytic platform, that can integrate multiple active sites for synergistic catalysis like enzymatic systems have recently attracted interest. Herein, we report a doubly interpenetrated metal-organic framework with dual active sites, MnIII-porphyrin sites to directly activate molecular oxygen and fluoren-9-one sites to produce a hydrogen atom transfer (HAT) agent by the proton-coupled electron transfer (PCET) process to simultaneously activate inert C(sp3)-H bonds for efficient inert C(sp3)-H bond oxidation under mild conditions. The bifunctional mixed-component MOF structure forced the two catalytic sites closer together to a more suitable distance, exhibiting high photocatalytic activity for inert C(sp3)-H bond oxidation with almost unique selectivity under mild conditions. The density functional theory (DFT) calculation of free energy during the whole catalytic process demonstrated that it is likely that the synergistic catalytic process occurred in the interframework to accelerate the catalytic reaction. The assembling mixed-component MOF for synergistic catalysis would be a prospective approach for the inert C(sp3)-H photoactivation and functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
19
|
Salt-templated porous melamine-based conjugated polymers for selective oxidation of amines into imines under visible light. J Colloid Interface Sci 2023; 634:159-168. [PMID: 36535155 DOI: 10.1016/j.jcis.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conjugated polymers have a broad application foreground in the field of photocatalytic organic synthesis to produce value-added chemicals due to their functional diversity, broad light responsive ability, high thermal and chemical stability, and tunable band structure. Herein, using mixed chloride salts (i.e., NaCl/LiCl) as building template, a series of porous conjugated polymers constructed by melamine and terephthalaldehyde monomers were obtained through a Schiff-base reaction in the absence of any external solvent. Melamine-terephthalaldehyde polymer (i.e., PMTPA-x, x represents the mass ratio of salt-mixture to mixed precursors of PMTPA) materials displayed porous morphologies and possessed different energy band structures via regulating the mass ratio of mixed-salt to monomers. Specifically, PMTPA-20 has a larger specific surface area and more suitable redox potential towards the photocatalytic oxidative coupling of amines to imines. Under visible light, with molecular oxygen as oxidant, PMTPA-20 achieves 97% conversion of benzylamine in 8 h which is 3.9 times higher than that of pristine PMTPA (25% conversion in 8 h). In addition, PMTPA-20 catalyst has good structure stability and reusability performance for photocatalytic reactions.
Collapse
|
20
|
Xiao X, Wang W, Wang J, Yang C, Zhang G, Lang X. Surface Engineering of Conjugated Polybenzothiadiazoles and Integration with Cobalt Oxides for Photocatalytic Water Oxidation. Chemistry 2022; 28:e202201244. [DOI: 10.1002/chem.202201244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xinghuo Xiao
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Wenyan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Jiali Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
21
|
Zhang Q, Jin Y, Ma L, Zhang Y, Meng C, Duan C. Chromophore‐Inspired Design of Pyridinium‐Based Metal–Organic Polymers for Dual Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204918. [DOI: 10.1002/anie.202204918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lin Ma
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
22
|
Yu XK, Zhao HY, Li JP, Li XJ, Yang JQ, Zhu YL, Lu Z. Mechanism for Topology Selection of Isomeric Two-Dimensional Covalent Organic Frameworks. J Phys Chem Lett 2022; 13:7087-7093. [PMID: 35900203 DOI: 10.1021/acs.jpclett.2c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of growth of one of the competitive topologies for covalent organic frameworks with constitutional isomers is poorly understood. Herein, we employ molecular dynamics to study the isoenergetic assembly of the rhombic square (sql) and Kagome lattice (kgm). The concentration, solvent conditions, and the reversibility of chemical reactions are considered by means of an Arrhenius two-state model to describe the reactions. High concentrations and poor solvent both result in sql, agreeing well with recent experiments. Moreover, the high reversibility of reactions gives rise to sql, while the low reversibility leads to kgm, suggesting a new way of regulating the topology. Our analyses support that the nucleation of isomers influenced by experimental conditions is responsible for the selection of topologies, which improves understanding of the control of topology. We also propose a strategy in which a two-step growth can be exploited to greatly improve the crystallinity of kgm.
Collapse
Affiliation(s)
- Xiang-Kun Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Huan-Yu Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Jun-Peng Li
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Co. Ltd., Kunming 650106, China
| | - Xing-Ji Li
- Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jian-Qun Yang
- Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
23
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper-Bridged Tetrakis(4-ethynylphenyl)ethene Aggregates with Photo-Regulated 1 O 2 and O 2 .- Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022; 61:e202202914. [PMID: 35543927 DOI: 10.1002/anie.202202914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Active species regulation is a key scientific issue that essentially determines the selectivity and activity of a photocatalyst. Herein, CuI -bridged tetrakis(4-ethynylphenyl)ethene aggregates (T4 EPE-Cu) with photo-regulated 1 O2 and O2 .- generation were demonstrated for selective photocatalytic aerobic oxidation. In this system, transient photovoltage combined with the density functional theory calculations confirmed that Cu-alkynyl was the main oxygen activation site. The adsorbed O2 tends to produce O2 .- because of the potential well effect of Cu-alkynyl under high-energy light excitation. But under low-energy light, O2 tends to produce 1 O2 via resonance energy transfer with Cu-alkynyl. For α-terpinene oxidation, the ratios of 1 O2 products to O2 .- products can be controlled from 1.3 (380 nm) to 10.7 (600 nm). Furthermore, T4 EPE-Cu exhibited ultrahigh photocatalytic performance for Glaser coupling and benzylamine oxidation, with a conversion and selectivity of over 99 %.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
24
|
Chromophore‐inspired Design of Pyridinium‐based Metal‐Organic Polymers for Dual Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper‐Bridged Tetrakis(4‐ethynylphenyl)ethene Aggregates with Photo‐Regulated
1
O
2
and O
2
.−
Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
26
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee H, Kim B. Geomimetic Hydrothermal Synthesis of Polyimide‐Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taehyung Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Yongchul Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geunsik Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hee‐Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeong‐Su Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
27
|
Haotian R, Zhu Z, Cai Y, Wang W, Wang Z, Liang A, Luo A. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
You P, Wei R, Ning G, Li D. An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Guan Q, Zhou L, Dong Y. Construction of Nanoscale Covalent Organic Frameworks via Photocatalysis‐Involved Cascade Reactions for Tumor‐Selective Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qun Guan
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| | - Le‐Le Zhou
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| | - Yu‐Bin Dong
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 China
| |
Collapse
|
30
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee HS, Kim BS. Geomimetic Hydrothermal Synthesis of Polyimide-Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113780. [PMID: 34708501 DOI: 10.1002/anie.202113780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Despite its abundance, water is not widely used as a medium for organic reactions. However, under geothermal conditions, water exhibits unique physicochemical properties, such as viscosity and a dielectric constant, and the ionic product become similar to those of common organic solvents. We have synthesized highly crystalline polyimide-based covalent organic frameworks (PICs) under geomimetic hydrothermal conditions. By exploiting triphenylene-2,3,6,7,10,11-hexacarboxylic acid in combination with various aromatic diamines, PICs with various pore dimensions and crystallinities were synthesized. XRD, FT-IR, and DFT calculations revealed that the solubility of the oligomeric intermediates under hydrothermal conditions affected the stacking structures of the crystalline PICs. Furthermore, the synthesized PICs demonstrate promising potential as an anode material in lithium-ion batteries owing to its unique redox-active properties and high surface area.
Collapse
Affiliation(s)
- Taehyung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
31
|
Li G, Ma W, Yang Y, Zhong C, Huang H, Ouyang D, He Y, Tian W, Lin J, Lin Z. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49482-49489. [PMID: 34636536 DOI: 10.1021/acsami.1c13997] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although organic artificial enzymes have been reported as biomimetic oxidation catalysts and are widely used for colorimetric biosensors, developing organic artificial enzymes with high enzymatic activity is still a challenge. Two-dimensional (2D) covalent organic frameworks (COFs) have shown superior potential in biocatalysts because of their periodic π-π arrays, tunable pore size and structure, large surface area, and thermal stability. The interconnection of electron acceptor and donor building blocks in the 2D conjugated COF skeleton can lead to narrower band gaps and efficient charge separation and transportation and thus is helpful to improve catalytic activity. Herein, a donor-acceptor 2D COF was synthesized using tetrakis(4-aminophenyl)pyrene (Py) as an electron donor and thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as an electron acceptor. Under visible light irradiation, the donor-acceptor 2D COF exhibited superior enzymatic catalytic activity, which could catalyze the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) by the formation of superoxide radicals and holes. Based on the above property, the photoactivated donor-acceptor 2D COF with enzyme-like catalytic properties was designed as a robust colorimetric probe for cheap, highly sensitive, and rapid colorimetric detection of glutathione (GSH); the corresponding linear range of GSH was 0.4-60 μM, and the limit of detection was 0.225 μM. This study not only presents the construction of COF-based light-activated nanozymes for environmentally friendly colorimetric detection of GSH but also provides a smart strategy for improving nanozyme activity.
Collapse
Affiliation(s)
- Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|