1
|
Zhang XX, Xue ZH, Wang Z, Yan QL. Thermal Reactivity of High-Density Hybrid Hexahydro-1,3,5-trinitro-1,3,5-triazine Crystals Prepared by a Microfluidic Crystallization Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7503-7513. [PMID: 37186958 DOI: 10.1021/acs.langmuir.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, the two-dimensional (2D) high nitrogen triaminoguanidine-glyoxal polymer (TAGP) has been used to dope hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) crystals using a microfluidic crystallization method. A series of constraint TAGP-doped RDX crystals using a microfluidic mixer (so-called controlled qy-RDX) with higher bulk density and better thermal stability have been obtained as a result of the granulometric gradation. The crystal structure and thermal reactivity properties of qy-RDX are largely affected by the mixing speed of the solvent and antisolvent. In particular, the bulk density of qy-RDX could be slightly changed in the range from 1.78 to 1.85 g cm-3 as a result of varied mixing states. The obtained qy-RDX crystals have better thermal stability than pristine RDX, showing a higher exothermic peak temperature and an endothermic peak temperature with a higher heat release. Ea for thermal decomposition of controlled qy-RDX is 105.3 kJ mol-1, which is 20 kJ mol-1 lower than that of pure RDX. The controlled qy-RDX samples with lower Ea followed the random 2D nucleation and nucleus growth (A2) model, whereas controlled qy-RDX with higher Ea (122.8 and 122.7 kJ mol-1) following some complex model between A2 and the random chain scission (L2) model.
Collapse
Affiliation(s)
- Xue-Xue Zhang
- Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Zhi-Hua Xue
- Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Zikangping Wang
- Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| | - Qi-Long Yan
- Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China
| |
Collapse
|
2
|
Sun S, Wang Z, Zhang H, Song X, Jin D, Xu J, Sun J. Host–guest energetic materials: a promising strategy of incorporating small insensitive molecule into the lattice cavities of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane to enhance the safety on the premise of maintaining the excellent energy density. CrystEngComm 2022. [DOI: 10.1039/d2ce00199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel HNIW-MA host–guest explosive was constructed by embedding the mall molecules into the lattice cavities of HNIW, and it enhances the safety on the premise of maintaining its energy density.
Collapse
Affiliation(s)
- Shanhu Sun
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Zhiqiang Wang
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Haobin Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Xiaomin Song
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Dengyu Jin
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| | - Jie Sun
- Institute of Chemical Materials, China Academy of Engineering Physics Mianyang, P. R. China
| |
Collapse
|
3
|
Sun S, Zhang H, Wang Z, Xu J, Huang S, Tian Y, Sun J. Smart Host-Guest Energetic Material Constructed by Stabilizing Energetic Fuel Hydroxylamine in Lattice Cavity of 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane Significantly Enhanced the Detonation, Safety, Propulsion, and Combustion Performances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61324-61333. [PMID: 34910453 DOI: 10.1021/acsami.1c20859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The host-guest inclusion strategy has become a promising method for developing novel high-energy density materials (HEDMs). The selection of functional guest molecules was a strategic project, as it can not only enhance the detonation performance of host explosives but can also modify some of their suboptimal performances. Here, to improve the propulsion and combustion performances of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW), a novel energetic-energetic host-guest inclusion explosive was obtained by incorporating energetic rocket fuel, hydroxylamine (HA), into the lattice cavities of HNIW. Based on their perfect space matching, the crystallographic density of HNIW-HA was determined to be 2.00 g/cm3 at 296 K, which has reached the gold standard regarding the density of HEDMs. HNIW-HA also showed higher thermal stability (Td = 245.9 °C) and safety (H50 = 16.8 cm) and superior detonation velocity (DV = 9674 m/s) than the ε-HNIW. Additionally, because of the excellent combustion performance of HA, HNIW-HA possessed higher propulsion performances, including combustion speed (SC = 39.5 mg/s), combustion heat (QC = 8661 J/g), and specific impulse (Isp = 276.4 s), than ε-HNIW. Thus, the host-guest inclusion strategy has potential to surpass the limitations of energy density and suboptimal performances of single explosives and become a strategy for developing multipurpose intermolecular explosives.
Collapse
Affiliation(s)
- Shanhu Sun
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Haobin Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Zhiqiang Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Shiliang Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Yong Tian
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| | - Jie Sun
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, People's Republic of China
| |
Collapse
|