1
|
Liu X, Wang Z, Teng C, Wang Z. Changes in gut microbiota and metabolites of mice with intravenous graphene oxide-induced embryo toxicity. Toxicol Res 2024; 40:571-584. [PMID: 39345742 PMCID: PMC11436620 DOI: 10.1007/s43188-024-00242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 10/01/2024] Open
Abstract
The expanding applications of graphene oxide (GO) nanomaterials have attracted interest in understanding their potential adverse effects on embryonic and fetal development. Numerous studies have revealed the importance of the maternal gut microbiota in pregnancy. In this study, we established a mouse GO exposure model to evaluate embryo toxicity induced by intravenous administration of GO during pregnancy. We also explored the roles of gut microbiota and fecal metabolites using a fecal microbiota transplantation (FMT) intervention model. We found that administration of GO at doses up to 1.25 mg/kg caused embryo toxicity, characterized by significantly increased incidences of fetal resorption, stillbirths, and decreased birth weight. In pregnant mice with embryo toxicity, the richness of the maternal gut microbiota was dramatically decreased, and components of the microbial community were disturbed. FMT alleviated the decrease in birth weight by remodeling the gut microbiota, especially via upregulation of the Firmicutes/Bacteroidetes ratio. We subsequently used untargeted metabolomics to identify characteristic fecal metabolites associated with GO exposure. These metabolites were closely correlated with the phyla Actinobacteria, Proteobacteria, and Cyanobacteria. Our findings offer new insights into the embryo toxic effects of GO exposure during pregnancy; they emphasize the roles of gut microbiota-metabolite interactions in adverse pregnancy outcomes induced by GO or other external exposures, as demonstrated through FMT intervention. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00242-3.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191 China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191 China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| |
Collapse
|
2
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
3
|
Karimi F, Alizadeh M, Bitaraf FS, Shirshahi V. Enhancing electrical conductivity and mechanical properties of decellularized umbilical cord arteries using graphene coatings. J Biomed Mater Res B Appl Biomater 2024; 112:e35448. [PMID: 38968133 DOI: 10.1002/jbm.b.35448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Traditional decellularized bioscaffolds possessing intact vascular networks and unique architecture have been extensively studied as conduits for repairing nerve damage. However, they are limited by the absence of electrical conductivity, which is crucial for proper functioning of nervous tissue. This study focuses on investigating decellularized umbilical cord arteries by applying coatings of graphene oxide (GO) and reduced graphene oxide (RGO) to their inner surfaces. This resulted in a homogeneous GO coating that fully covered the internal lumen of the arteries. The results of electrical measurements demonstrated that the conductivity of the scaffolds could be significantly enhanced by incorporating RGO and GO conductive sheets. At a low frequency of 0.1 Hz, the electrical resistance level of the coated scaffolds decreased by 99.8% with RGO and 98.21% with GO, compared with uncoated scaffolds. Additionally, the mechanical properties of the arteries improved by 24.69% with GO and 32.9% with RGO after the decellularization process. The GO and RGO coatings did not compromise the adhesion of endothelial cells and promoted cell growth. The cytotoxicity tests revealed that cell survival rate increased over time with RGO, while it decreased with GO, indicating the time-dependent effect on the cytotoxicity of GO and RGO. Blood compatibility evaluations showed that graphene nanomaterials did not induce hemolysis but exhibited some tendency toward blood coagulation.
Collapse
Affiliation(s)
- Fateme Karimi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Sadat Bitaraf
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Vahid Shirshahi
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Wang L, Liu Y, Lin Z, Chen H, Liu B, Yan X, Zhu T, Zhang Q, Zhao J. Durable immunomodulatory hierarchical patch for rotator cuff repairing. Bioact Mater 2024; 37:477-492. [PMID: 38698919 PMCID: PMC11063994 DOI: 10.1016/j.bioactmat.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Degradable rotator cuff patches, followed over five years, have been observed to exhibit high re-tear rates exceeding 50%, which is attributed to the inability of degradable polymers alone to restore the post-rotator cuff tear (RCT) inflammatory niche. Herein, poly(ester-ferulic acid-urethane)urea (PEFUU) was developed, featuring prolonged anti-inflammatory functionality, achieved by the integration of ferulic acid (FA) into the polyurethane repeating units. PEFUU stably releases FA in vitro, reversing the inflammatory niche produced by M1 macrophages and restoring the directed differentiation of stem cells. Utilizing PEFUU, hierarchical composite nanofiber patch (HCNP) was fabricated, simulating the natural microstructure of the tendon-to-bone interface with an aligned-random alignment. The incorporation of enzymatic hydrolysate derived from decellularized Wharton jelly tissue into the random layer could further enhance cartilage regeneration at the tendon-to-bone interface. Via rat RCT repairing model, HCNP possessing prolonged anti-inflammatory properties uniquely facilitated physiological healing at the tendon-to-bone interface's microstructure. The alignment of fibers was restored, and histologically, the characteristic tripartite distribution of collagen I - collagen II - collagen I was achieved. This study offers a universal approach to the functionalization of degradable polymers and provides a foundational reference for their future applications in promoting the in vivo regeneration of musculoskeletal tissues.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yonghang Liu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, China
| | - Zhiqi Lin
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Huiang Chen
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Bowen Liu
- Bioarticure Medical Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai, 200444, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
5
|
Deepak T, Bharat BS, R Babu A. Evaluation of physicochemical properties of graphene oxide-decellularized pericardium biohybrid scaffold. J Biomed Mater Res B Appl Biomater 2024; 112:e35353. [PMID: 37968838 DOI: 10.1002/jbm.b.35353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
The decellularized pericardium has been widely used in cardiac tissue engineering, whereas its clinical applications are limited due to weak mechanical performance, high collagen exposure, and being prone to microbial contamination. In this study, a biohybrid scaffold of the decellularized caprine pericardium (DCP) and graphene oxide (GO) was fabricated by an immersion coating technique. The antimicrobial activity of GO was evaluated against Escherichia coli and showed minimum inhibitory concentration at 125 μg/mL and minimum bactericidal concentration at 250 μg/mL. The presence of GO on the surface of the biohybrid GO-DCP was confirmed through SEM analysis. The existence of glycosaminoglycan, elastin, and collagen in the DCP and GO-DCP was inferred from the FTIR spectra. The biocompatibility of GO-DCP was studied by seeding valvular interstitial cells, and the results show GO coating supports cell adhesion on the serous and fibrous sides of the DCP. Further, the biomechanical response of DCP is unaltered by the presence of GO. In conclusion, GO enhances the biological performance of decellularized pericardium, which can be used in cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Thirumalai Deepak
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Bansod Sneha Bharat
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
6
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
7
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
8
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
9
|
Pereira AT, Rodrigues CRS, Silva AC, Vidal R, Ventura JO, Gonçalves IC, Pereira AM. Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomater Sci Eng 2023. [PMID: 37256830 DOI: 10.1021/acsbiomaterials.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 μA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 μA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 μA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 μF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.
Collapse
Affiliation(s)
- Andreia T Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia R S Rodrigues
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana C Silva
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - João O Ventura
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - André M Pereira
- IFIMUP - Instituto de Fisica de Materiais Avançados, Nanotecnologias e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Sun X, Yang S, Tong S, Guo S. Study on Exosomes Promoting the Osteogenic Differentiation of ADSCs in Graphene Porous Titanium Alloy Scaffolds. Front Bioeng Biotechnol 2022; 10:905511. [PMID: 35733528 PMCID: PMC9207277 DOI: 10.3389/fbioe.2022.905511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium and titanium alloys (Ti6Al4V and Ti) have been widely used in bone tissue engineering to repair maxillofacial bone defects caused by traumas and tumors. However, such materials are also bio-inert, which does not match the elastic modulus of bone. Therefore, different surface modifications have been proposed for clinical application. Based on the use of traditional titanium alloy in the field of bone repair defects, we prepared a compound Gr-Ti scaffold with ADSC-derived Exos. The results showed that Gr-Ti scaffolds have low toxicity and good biocompatibility, which can promote the adhesion and osteogenic differentiation of ADSCs. Exos played a role in promoting osteogenic differentiation of ADSCs: the mRNA levels of RUNX2, ALP, and Osterix in the Gr-Ti/Exos group were significantly higher than those in the Gr-Ti group, which process related to the Wnt signaling pathway. Gr-Ti scaffolds with ADSCs and ADSC-derived Exos successfully repaired rabbit mandibular defects. The bone mineral density and the bending strength of the Gr-Ti/Exos group was significantly higher than that of the Gr-Ti group. This study provides a theoretical basis for the research and development of new clinical bone repair materials.
Collapse
Affiliation(s)
| | | | | | - Shu Guo
- *Correspondence: Shu Guo, ; Shuang Tong,
| |
Collapse
|
11
|
The Effects of Graphene on the Biocompatibility of a 3D-Printed Porous Titanium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D-printed titanium (Ti) materials have attracted much attention in the field of bone tissue repair. However, the combination strength of traditional alloy materials with bone tissue is lower, and the elastic modulus is higher than that of natural bone tissue, which makes the titanium alloy susceptible to stress shielding phenomena after implantation. Therefore, it is urgent to find better surface modification technology. In this study, the physical and chemical properties, toxicity, and proliferation of adipose stem cells of composite graphene-coated titanium alloy (Gr–Ti) were investigated using 3D-printed titanium alloy as a material model. Physical and chemical property tests confirmed that 3D printing could produce porous titanium alloy materials; the compressive strength and elastic modulus of the titanium alloy scaffolds were 91 ± 3 MPa and 3.1 ± 0.4 GPa, matching the elastic modulus of normal bone tissue. The surface characterization shows that graphene can be coated on titanium alloy by a micro-arc oxidation process, which significantly improves the surface roughness of titanium alloy. The roughness factor (Ra) of the Ti stent was 4.95 ± 1.12 μm, while the Ra of the Gr–Ti stent was 6.37 ± 0.72 μm. After the adipose stem cells were co-cultured with the scaffold for 4 h and 24 h, it was found that the Gr–Ti scaffold could better promote the early cell adhesion. CCK-8 tests showed that the number of ADSCs on the G–Ti scaffold was significantly higher than that on the Ti scaffold (p < 0.01). The relative growth rate (RGR) of ADSCs in Gr–Ti was grade 0–1 (non-toxic). In the in vivo experiment of repairing a critical bone defect of a rabbit mandible, the bone volume fraction in the Gr–Ti group increased to 49.42 ± 3.28%, which was much higher than that in the Ti group (39.76 ± 3.62%) (p < 0.05). In conclusion, the porous graphene–titanium alloy promotes the proliferation and adhesion of adipose stem cells with multidirectional differentiation potential, which has great potential for the application of bone tissue engineering in repairing bone defects in the future.
Collapse
|
12
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|