1
|
Gao Y, Li Z, Wang P, Cui WG, Wang X, Yang Y, Gao F, Zhang M, Gan J, Li C, Liu Y, Wang X, Qi F, Zhang J, Han X, Du W, Chen J, Xia Z, Pan H. Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage. Nat Commun 2024; 15:928. [PMID: 38296957 PMCID: PMC10830568 DOI: 10.1038/s41467-024-45082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials.
Collapse
Affiliation(s)
- Yong Gao
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Pan Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Xiaowei Wang
- Department of Materials Science and Engineering, University of North Texas, Denton, TX, 76203, USA
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Fan Gao
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Mingchang Zhang
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Jiantuo Gan
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Chenchen Li
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Fulai Qi
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China
| | - Jing Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wubin Du
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Jian Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China.
| | - Zhenhai Xia
- Australian Carbon Materials Centre, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Hongge Pan
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, China.
| |
Collapse
|
2
|
Zhang H, Ye J, Wu X, Hu X, Hu H, Ma C, Chen Q. Effect of La Doping on Kinetic and Thermodynamic Performances of Ti 1.2CrMn Alloy upon De/Hydrogenation. ACS OMEGA 2022; 7:40807-40814. [PMID: 36406518 PMCID: PMC9670376 DOI: 10.1021/acsomega.2c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Development of efficient hydrogen storage materials is one of the great challenges in the area of hydrogen energy and fuel cells. Herein, a La-doped Ti1.2CrMn alloy with high hydriding capacity (2.1 wt % H) and dehydriding capacity (1.8 wt % H) was successfully developed. The crystallographic characteristics, microstructural evolution, and hydrogen storage mechanisms of the alloy were investigated systematically. It was found that the introduction of La increased the cell volume of alloy and thus improved the hydrogenation kinetic, practical hydrogenation capacity, and cyclic property. The hydrogenation kinetic results of the La-doped alloy indicate that it exhibited a higher hydrogenation rate than that of the La-free alloy. It is ascribed to the formation of LaH3, which provides a fast diffusion channel for hydrogen atoms to enter the alloy matrix. The dehydrogenation enthalpy (ΔH) of the La-doped alloy was calculated by the van't Hoff equation and PCT curves to be ∼18.2 kJ/mol. The cycle test proves that the La-doped Ti1.2CrMn alloy, due to La addition, reduces the lattice expansion and lattice stress and exhibits excellent durability.
Collapse
Affiliation(s)
- Hanbing Zhang
- State
Grid Lishui Power Supply Company, Lishui 323000, China
| | - Jichao Ye
- State
Grid Lishui Power Supply Company, Lishui 323000, China
| | - Xiaogang Wu
- State
Grid Lishui Power Supply Company, Lishui 323000, China
| | - Xinwei Hu
- State
Grid Lishui Power Supply Company, Lishui 323000, China
| | - Huazhou Hu
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chuanming Ma
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Qingjun Chen
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
3
|
Liu H, He S, Li G, Wang Y, Xu L, Sheng P, Wang X, Jiang T, Huang C, Lan Z, Zhou W, Guo J. Directed Stabilization by Air-Milling and Catalyzed Decomposition by Layered Titanium Carbide Toward Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42102-42112. [PMID: 36097412 DOI: 10.1021/acsami.2c11805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AlH3 is a metastable hydride with a theoretical hydrogen capacity of 10.01 wt % and is very easy to decompose during ball milling especially in the presence of many catalysts, which will lead to the attenuation of the available hydrogen capacity. In this work, AlH3 was ball milled in air (called "air-milling") with layered Ti3C2 to prepare a Ti3C2-catalyzed AlH3 hydrogen storage material. Such air-milled and Ti3C2-catalyzed AlH3 possesses excellent hydrogen storage performances, with a low initial decomposition temperature of just 61 °C and a high hydrogen release capacity of 8.1 wt %. In addition, 6.9 wt % of hydrogen can be released within 20 min at constantly 100 °C, with a low activation energy as low as 40 kJ mol-1. Air-milling will lead to the formation of an Al2O3 oxide layer on the AlH3 particles, which will prevent continuous decomposition of AlH3 when milling with active layered Ti3C2. The layered Ti3C2 will grip on and intrude into the AlH3 particle oxide layers and then catalyze the decomposition of AlH3 during heating. The strategy employing air-milling as a synthesis method and utilizing layered Ti3C2 as a catalyst in this work can solve the key issue of severe decomposition during ball milling with catalysts economically and conveniently and thus achieve both high-capacity and low-temperature hydrogen storage of AlH3. This air-milling method is also effective for other active catalysts toward both reducing the decomposition temperature and increasing the available hydrogen capacity of AlH3.
Collapse
Affiliation(s)
- Haizhen Liu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Shixuan He
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Guangxu Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Ye Wang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Li Xu
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Peng Sheng
- State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
| | - Xinhua Wang
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Jiang
- Guangxi University of Finance and Economics, Nanning 530003, China
| | - Cunke Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiqiang Lan
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenzheng Zhou
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jin Guo
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Zhao S, Liang L, Liu B, Wang L, Liang F. Superior Dehydrogenation Performance of α-AlH 3 Catalyzed by Li 3 N: Realizing 8.0 wt.% Capacity at 100 °C. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107983. [PMID: 35307952 DOI: 10.1002/smll.202107983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The high dehydrogenation temperature of aluminum hydride (AlH3 ) has always been an obstacle to its application as a portable hydrogen source. To solve this problem, lithium nitride is introduced into the aluminum hydride system as a catalyst to optimize the dehydrogenation drastically, which reduces the initial dehydrogenation temperature from 140.0 to 66.8 °C, and provides a stable hydrogen capacity of 8.24, 6.18, and 5.75 wt.% at 100, 90, and 80 °C within 120 min by adjusting the mass fraction of lithium nitride. Approximately 8.0 wt.% hydrogen can be released within 15 min at 100 °C for the sample of 10 wt.% doping. Moderate dehydrogenation temperature slows down the inevitable self-dehydrogenation process during the ball-milling process, and the enhanced kinetics at lower temperature shows the possibility of application in the fuel cell.
Collapse
Affiliation(s)
- Shaolei Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Long Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| |
Collapse
|