1
|
Sattasathuchana T, Xu P, Bertoni C, Kim YL, Leang SS, Pham BQ, Gordon MS. The Effective Fragment Molecular Orbital Method: Achieving High Scalability and Accuracy for Large Systems. J Chem Theory Comput 2024; 20:2445-2461. [PMID: 38450638 DOI: 10.1021/acs.jctc.3c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The effective fragment molecular orbital (EFMO) method has been developed to predict the total energy of a very large molecular system accurately (with respect to the underlying quantum mechanical method) and efficiently by taking advantage of the locality of strong chemical interactions and employing a two-level hierarchical parallelism. The accuracy of the EFMO method is partly attributed to the accurate and robust intermolecular interaction prediction between distant fragments, in particular, the many-body polarization and dispersion effects, which require the generation of static and dynamic polarizability tensors by solving the coupled perturbed Hartree-Fock (CPHF) and time-dependent HF (TDHF) equations, respectively. Solving the CPHF and TDHF equations is the main EFMO computational bottleneck due to the inefficient (serial) and I/O-intensive implementation of the CPHF and TDHF solvers. In this work, the efficiency and scalability of the EFMO method are significantly improved with a new CPU memory-based implementation for solving the CPHF and TDHF equations that are parallelized by either message passing interface (MPI) or hybrid MPI/OpenMP. The accuracy of the EFMO method is demonstrated for both covalently bonded systems and noncovalently bound molecular clusters by systematically examining the effects of basis sets and a key distance-related cutoff parameter, Rcut. Rcut determines whether a fragment pair (dimer) is treated by the chosen ab initio method or calculated using the effective fragment potential (EFP) method (separated dimers). Decreasing the value of Rcut increases the number of separated (EFP) dimers, thereby decreasing the computational effort. It is demonstrated that excellent accuracy (<1 kcal/mol error per fragment) can be achieved when using a sufficiently large basis set with diffuse functions coupled with a small Rcut value. With the new parallel implementation, the total EFMO wall time is substantially reduced, especially with a high number of MPI ranks. Given a sufficient workload, nearly ideal strong scaling is achieved for the CPHF and TDHF parts of the calculation. For the first time, EFMO calculations with the inclusion of long-range polarization and dispersion interactions on a hydrated mesoporous silica nanoparticle with explicit water solvent molecules (more than 15k atoms) are achieved on a massively parallel supercomputer using nearly 1000 physical nodes. In addition, EFMO calculations on the carbinolamine formation step of an amine-catalyzed aldol reaction at the nanoscale with explicit solvent effects are presented.
Collapse
Affiliation(s)
- Tosaporn Sattasathuchana
- Department of Chemistry, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Peng Xu
- Department of Chemistry, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yu Lim Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarom S Leang
- EP Analytics, Inc., 9909 Mira Mesa Blvd Ste. 230, San Diego, California 92131, United States
| | - Buu Q Pham
- Department of Chemistry, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Mark S Gordon
- Department of Chemistry, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Alizadeh Sahraei A, Mejia Bohorquez B, Tremblay D, Moineau S, Garnier A, Larachi F, Lagüe P. Insight into the Binding Mechanisms of Quartz-Selective Peptides: Toward Greener Flotation Processes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17922-17937. [PMID: 37010879 PMCID: PMC10103053 DOI: 10.1021/acsami.3c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Mining practices, chiefly froth flotation, are being critically reassessed to replace their use of biohazardous chemical reagents in favor of biofriendly alternatives as a path toward green processes. In this regard, this study aimed at evaluating the interactions of peptides, as potential floatation collectors, with quartz using phage display and molecular dynamics (MD) simulations. Quartz-selective peptide sequences were initially identified by phage display at pH = 9 and further modeled by a robust simulation scheme combining classical MD, replica exchange MD, and steered MD calculations. Our residue-specific analyses of the peptides revealed that positively charged arginine and lysine residues were favorably attracted by the quartz surface at basic pH. The negatively charged residues at pH 9 (i.e., aspartic acid and glutamic acid) further showed affinity toward the quartz surface through electrostatic interactions with the positively charged surface-bound Na+ ions. The best-binding heptapeptide combinations, however, contained both positively and negatively charged residues in their composition. The flexibility of peptide chains was also shown to directly affect the adsorption behavior of the peptide. While attractive intrapeptide interactions were dominated by a weak peptide-quartz binding, the repulsive self-interactions in the peptides improved the binding propensity to the quartz surface. Our results showed that MD simulations are fully capable of revealing mechanistic details of peptide adsorption to inorganic surfaces and are an invaluable tool to accelerate the rational design of peptide sequences for mineral processing applications.
Collapse
Affiliation(s)
- Abolfazl Alizadeh Sahraei
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Barbara Mejia Bohorquez
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Denise Tremblay
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Alain Garnier
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Faïçal Larachi
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Patrick Lagüe
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|