1
|
Rahman M, Singh J, Aodah A, Alrobaian M, Alruwaili NK, Almalki WH, Almujri SS, Rab SO, Madkhali OA, Sahoo A, Lal JA. Chiral nanosystem and chiral supraparticles for drug delivery: an expert opinion. Expert Opin Drug Deliv 2024:1-20. [PMID: 39688614 DOI: 10.1080/17425247.2024.2444347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Chiral nanocarriers enhance therapeutic efficacy by improving in vivo stability and cellular uptake. Chemical functionalization reduces cytotoxicity, resulting in favorable biocompatibility. Nanoparticles self-assemble into supraparticles, enhancing drug delivery through improved retention and drug loading. AREA COVERED This review covers chiral nanostructures and chiral supraparticles, and their applications in drug delivery and various healthcare applications. EXPERT OPINION The chirality of biomaterials is crucial for advancing nanomedicine. Chiral nanosystem enhance drug delivery by interacting selectively with biological molecules, improving their specificity and efficacy. This reduces off-target effects and improves therapeutic outcomes. Research has focused on cellular uptake and elimination to ensure safety, and chiral nanomaterials also show promise in optical sensing and gene editing. Their biocompatibility and ability to self-assemble into supraparticles may make them ideal for drug delivery systems.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Janhvi Singh
- Department of Biotechnology and Market Research, Thelansis Knowledge Partners, Gurugram, India
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, Al Qura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Heo E, Hwang W, Koo HB, Park S, Kim DN, Kim HY, Kim Y, Chang JB. Precise and selective macroscopic assembly of a dual lock-and-key structured hydrogel. MATERIALS HORIZONS 2024; 11:428-441. [PMID: 37955605 DOI: 10.1039/d3mh00995e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Macroscopic assembly offers immense potential for constructing complex systems due to the high design flexibility of the building blocks. In such assembly systems, hydrogels are promising candidates for building blocks due to their versatile chemical compositions and ease of property tuning. However, two major challenges must be addressed to facilitate application in a broader context: the precision of assembly and the quantity of orthogonally matching pairs must both be increased. Although previous studies have attempted to address these challenges, none have successfully dealt with both simultaneously. Here, we propose topology-based design criteria for the selective assembly of hydrogel building blocks. By introducing the dual lock-and-key structures, we demonstrate highly precise assembly exclusively between the matching pairs. We establish principles for selecting multiple orthogonally matching pairs and achieve selective assembly involving simple one-to-one matching and complex assemblies with multiple orthogonal matching points. Moreover, by harnessing hydrogel tunability and the abundance of matching pairs, we synthesize complementary single-stranded structures for programmable assembly and successfully assemble them in the correct order. Finally, we demonstrate a hydrogel-based self-assembled logic gate system, including a YES gate, an OR gate, and an AND gate. The output is generated only when the corresponding inputs are provided according to each logic.
Collapse
Affiliation(s)
- Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wooseop Hwang
- Department of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Zhang Q, Lin C, Chen C, Zhang L, Shi F, Cheng M. Polyelectrolyte chain conformation matters in macroscopic supramolecular self-assembly. Chem Commun (Camb) 2023; 59:14114-14117. [PMID: 37929664 DOI: 10.1039/d3cc04140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
We demonstrate molecular-conformation-dependent macroscopic supramolecular self-assembly (MSA) driven by electrostatic interactions. Evidence from single molecular force spectroscopy reveals that polyelectrolytes modified on MSA component surfaces make MSA possible with a loop conformation, while those with a flat conformation lead to no assembly, which is attributed to distinct molecular mobility. We believe that this finding is also applicable in fundamental phenomena such as surface adsorption and adhesion regarding polymers.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Cuiling Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chen Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Liqun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Xing L, Song H, Wei J, Wang X, Yang Y, Zhe P, Luan M, Xu J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules 2023; 28:molecules28104120. [PMID: 37241863 DOI: 10.3390/molecules28104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Thin oxide layers form easily on the surfaces of titanium (Ti) components, with thicknesses of <100 nm. These layers have excellent corrosion resistance and good biocompatibility. Ti is susceptible to bacterial development on its surface when used as an implant material, which reduces the biocompatibility between the implant and the bone tissue, resulting in reduced osseointegration. In the present study, Ti specimens were surface-negatively ionized using a hot alkali activation method, after which polylysine and polydopamine layers were deposited on them using a layer-by-layer self-assembly method, then a quaternary ammonium salt (QAS) (EPTAC, DEQAS, MPA-N+) was grafted onto the surface of the coating. In all, 17 such composite coatings were prepared. Against Escherichia coli and Staphylococcus aureus, the bacteriostatic rates of the coated specimens were 97.6 ± 2.0% and 98.4 ± 1.0%, respectively. Thus, this composite coating has the potential to increase the osseointegration and antibacterial performance of implantable Ti devices.
Collapse
Affiliation(s)
- Lei Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyang Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, China
| | - Xue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaozhen Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Pengbo Zhe
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Liu Y, Zhao R, Li S, Xue X, Zhang Q, Shi F, Cheng M. Robust Electrostatically Interactive Hydrogel Coatings for Macroscopic Supramolecular Assembly via Rapid Wet Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21640-21650. [PMID: 37074265 DOI: 10.1021/acsami.3c02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A macroscopic supramolecular assembly (MSA) refers to non-covalent interactions between building blocks over a micrometer scale, which provides insights into bio-/wet adhesion, self-healing, and so on and new fabrication strategies to heterogeneous structures and bio-scaffolds. The key to realize the MSA of rigid materials is pre-modifying a compliant coating known as a "flexible spacing coating" beneath the interactive moieties. However, available coatings are limited to polyelectrolyte multilayers with shortcomings of tedious fabrication, weak adhesion to substrates, susceptibility to external reagents, and so on. Here, we develop a facile method to induce a new "flexible spacing coating" of a poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel with electrostatic interactions to achieve MSA of diverse rigid materials (quartz, metal, rubber, and plastics). Selective self-assembly of positive-negative charged surfaces is observed by the naked eye under 3 min of shaking in water, providing strategies to rapid wet adhesion. The interfacial binding force between positive-negative interacted surfaces is 1018.1 ± 299.2 N/m2, which is over two magnitudes larger than that of control groups, that is, positive-positive (24.4 ± 10.0 N/m2) and negative-negative (67.5 ± 16.7 N/m2) interacted surfaces. In situ force measurements and control experiments of identically charged building blocks have strongly supported the improved binding strength and chemical selectivity between interactive building blocks. The coating is advantageous with a simple fabrication, strong adhesion to materials, robust solvent tolerance to assembly solutions, and feasibility of photo-patterning. We envision that the above strategy would broaden the material choices of flexible spacing coatings for efficient MSA and new methods for rapid interfacial adhesion.
Collapse
Affiliation(s)
- Yijing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rongzhuang Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaohua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianchong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zhang Q, Zhao B, Lin Z, Shi F, Cheng M. Macroscopic Supramolecular Assembly of Rigid Building Blocks Facilitated by Layer-By-Layer Assembled Microgel Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2459-2467. [PMID: 36538496 DOI: 10.1021/acsami.2c19546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Macroscopic supramolecular assembly (MSA) of building blocks larger than 1 μm provides new methodology for fabrication of functional supramolecular materials and a platform for mechanism investigation of interfacial phenomena. Most reports on MSA are restricted to soft hydrogels, and supramolecular groups can be directly integrated into a hydrogel matrix to generate sufficient attraction for maintaining macroscopic assemblies. For non-hydrogel stiff building blocks, two layer-by-layer modification processes consisting of flexible spacing coating and additional interacting groups are necessary to enable MSA, which is laborious and time-consuming. Approaches for highly efficient MSA based on flexible spacing coating are desired. In this work, MSA of polydimethylsiloxane (PDMS) building blocks is demonstrated by inducing microgel films that serve as both flexible spacing coating and surface functional groups, thus avoiding a two-step LbL modification process. By the varying bilayer number of microgel films, the MSA probability of modified PDMS increases from 54% at 3 bilayers to 100% at 6 bilayers. Control experiments and in situ force measurement strongly support the obtained MSA results and verify the dominant role of the microgel film as a flexible spacing coating and a supramolecularly interactive layer in achieving MSA. Moreover, the underlying mechanism is interpreted as low Young's modulus microgel films rendering surface groups highly mobile to enhance the multivalent interfacial binding. Taken together, this work has demonstrated the feasibility of MSA of rigid building blocks assisted by microgel films as flexible spacing coating and supramolecularly interactive layer simultaneously, which may extend the application fields of microgel materials to interfacial adhesion and advanced manufacturing with MSA methodology.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingkun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxing Lin
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Zhou L, Su C, Chen B, Zhao Q, Wang X, Zhao X, Ju G. Durable ER@SiO2@PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Zhang W, Day GJ, Zampetakis I, Carrabba M, Zhang Z, Carter BM, Govan N, Jackson C, Chen M, Perriman AW. Three-Dimensional Printable Enzymatically Active Plastics. ACS APPLIED POLYMER MATERIALS 2021; 3:6070-6077. [PMID: 35983011 PMCID: PMC9376927 DOI: 10.1021/acsapm.1c00845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we describe a facile route to the synthesis of enzymatically active highly fabricable plastics, where the enzyme is an intrinsic component of the material. This is facilitated by the formation of an electrostatically stabilized enzyme-polymer surfactant nanoconstruct, which, after lyophilization and melting, affords stable macromolecular dispersions in a wide range of organic solvents. A selection of plastics can then be co-dissolved in the dispersions, which provides a route to bespoke 3D enzyme plastic nanocomposite structures using a wide range of fabrication techniques, including melt electrowriting, casting, and piston-driven 3D printing. The resulting constructs comprising active phosphotriesterase (arPTE) readily detoxify organophosphates with persistent activity over repeated cycles and for long time periods. Moreover, we show that the protein guest molecules, such as arPTE or sfGFP, increase the compressive Young's modulus of the plastics and that the identity of the biomolecule influences the nanomorphology and mechanical properties of the resulting materials. Overall, we demonstrate that these biologically active nanocomposite plastics are compatible with state-of-the-art 3D fabrication techniques and that the methodology could be readily applied to produce robust and on-demand smart nanomaterial structures.
Collapse
Affiliation(s)
- William
H. Zhang
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Graham J. Day
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ioannis Zampetakis
- Bristol
Composites Institute (ACCIS), University
of Bristol, Bristol BS8 1TR, United Kingdom
| | - Michele Carrabba
- Bristol
Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Zhongyang Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Ben M. Carter
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| | - Norman Govan
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Colin Jackson
- Australian
National University, Research School of
Chemistry, Canberra ACT 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Menglin Chen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus DK-8000, Denmark
| | - Adam W. Perriman
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
10
|
Han ST, Duan HY, Chen LY, Zhan TG, Liu LJ, Kong LC, Zhang KD. Photo-Controlled Macroscopic Self-Assembly Based on Photo-Switchable Hetero-Complementary Quadruple Hydrogen Bonds. Chem Asian J 2021; 16:3886-3889. [PMID: 34591366 DOI: 10.1002/asia.202101076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Indexed: 01/19/2023]
Abstract
A photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module (Azo-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derivative (Napy-1), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×104 -fold differences in binding strength (ON/OFF ratios). Furthermore, smart polymeric gels with unique photo-controlled macroscopic self-assembly behavior can be fabricated by introducing such quadruple H-bonding array as photo-regulable noncovalent interfacial connections.
Collapse
Affiliation(s)
- Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Lan-Yun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
11
|
Yang Y, Li Q, Zhang H, Liu H, Ji X, Tang BZ. Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105418. [PMID: 34541727 DOI: 10.1002/adma.202105418] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 05/07/2023]
Abstract
With the continuous advancement of information technology, the requirements for the information storage capacity of materials are getting higher and higher. However, information code materials usually only store a single piece of information. In order to improve their storage capacity, aggregation-induced emission (AIE) supramolecular adhesive hydrogels with different fluorescent colors are prepared, and a "Codes in Code" method is used to demonstrate the storage capacity for large amounts of information. Four kinds of poly(vinyl alcohol) (PVA) supramolecular hydrogels with different fluorescent colors are prepared; based on the hydrogen bonds on the hydrogel surface, these hydrogels can be assembled into a hydrogel, G5, which shows multiple fluorescent colors under the irradiation of UV light. When many 1D barcode patterns or/and 2D code patterns are incorporated into G5, not only a kind of 3D information but also plenty of 1D or/and 2D information can be stored. Therefore, the information codes prepared by the "Codes in Code" method can store a large amount of information.
Collapse
Affiliation(s)
- Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanwei Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| |
Collapse
|
12
|
Liu Y, Zhang J, Li S, Xia H. Photopolymerization strategy for the preparation of small-diameter artificial blood vessels with micro-nano structures on the inner wall. BIOMEDICAL OPTICS EXPRESS 2021; 12:5844-5854. [PMID: 34692219 PMCID: PMC8515966 DOI: 10.1364/boe.432441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Although large diameter vessels made of polyurethane materials have been widely used in clinical practice, the biocompatibility and long-term patency of small diameter artificial vessels have not been well addressed. Any technological innovation and advancement in small-diameter artificial blood vessels is of great interest to the biomedical field. Here a novel technique is used to produce artificial blood vessels with a caliber of less than 6 mm and a wall thickness of less than 0.5 mm by rotational exposure, and to form a bionic inner wall with a periodically micro-nano structure inside the tube by laser double-beam interference. The polyethylene glycol diacrylate used is a widely recognized versatile biomaterial with good hydrophilicity, biocompatibility and low cytotoxicity. The effect of the bionic structure on the growth of hepatocellular carcinoma cells and human umbilical vein endothelial cells was investigated, and it was demonstrated that the prepared vessels with the bionic structure could largely promote the endothelialization process of the cells inside them.
Collapse
Affiliation(s)
- Yonghao Liu
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, School of Mechatronics Engineering, Daqing Normal University, Daqing 163712, China
| | - Jiawei Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Shunxin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Xue Y, Ye K, Wang X, Xiang Y, Pang S, Bao C, Zhu L. Precise macroscopic supramolecular assembly of photopatterned hydrogels. Chem Commun (Camb) 2021; 57:8786-8789. [PMID: 34382046 DOI: 10.1039/d1cc03428f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here we demonstrate that a precise macroscopic supramolecular assembly (MSA) can be achieved using a surface photopatterning strategy. The electrostatic interaction of the photopatterned polyelectrolytes drives hydrogel cuboids to form a stable MSA on a millimeter scale and the spatial controllability of light enables the hydrogels to be assembled into complex supramolecular architectures.
Collapse
Affiliation(s)
- Yuan Xue
- Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | | | |
Collapse
|