Zhao S, Huang L, Huang M, Lin WF, Wu Y. Novel Perovskite Structured Nd
0.5Ba
0.5Co
1/3Ni
1/3Mn
1/3O
3-δ as Highly Efficient Catalyst for Oxygen Electrode in Solid Oxide Electrochemical Cells.
ACS APPLIED MATERIALS & INTERFACES 2023;
15:59512-59523. [PMID:
38100658 DOI:
10.1021/acsami.3c14336]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Developing catalytic materials with highly efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for lower-temperature solid oxide fuel cell (SOFC) and electrolysis cell (SOEC) technologies. In this work, a novel triple perovskite material, Nd0.5Ba0.5Co1/3Ni1/3Mn1/3O3-δ, has been developed and employed as a catalyst for both ORR and OER in SOFC and SOEC operations at relatively lower temperatures, showing a low polarization resistance of 0.327 Ω cm2, high-power output of SOFC up to 773 mW cm-2 at 650 °C, and a high current density of 1.57 A cm-2 from SOEC operation at 1.5 V at 600 °C. The relaxation time distribution reveals that Nd0.5Ba0.5Co1/3Ni1/3Mn1/3O3-δ could maintain a slow polarization process at the relatively low operating temperature, offering a significant antipolarization advantage over other perovskite electrode materials. The Nd0.5Ba0.5Co1/3Ni1/3Mn1/3O3-δ electrode provides a low energy barrier of about 0.36 eV in oxygen ion mobility, which is beneficent for oxygen reduction/evolution reaction processes.
Collapse