1
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
2
|
Wang G, Li Q, Zhang W, Wu J, Fan W, Wang L, Liang Z, Huang Z, Lin Z, Wang G, Wang J, Huang S. Unveiling the Synergy of Architecture and Anion Vacancy on Bi 2Te 3-x@NPCNFs for Fast and Stable Potassium Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13858-13868. [PMID: 38441545 DOI: 10.1021/acsami.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Large volume strain and slow kinetics are the main obstacles to the application of high-specific-capacity alloy-type metal tellurides in potassium-ion storage systems. Herein, Bi2Te3-x nanocrystals with abundant Te-vacancies embedded in nitrogen-doped porous carbon nanofibers (Bi2Te3-x@NPCNFs) are proposed to address these challenges. In particular, a hierarchical porous fiber structure can be achieved by the polyvinylpyrrolidone-etching method and is conducive to increasing the Te-vacancy concentration. The unique porous structure together with defect engineering modulates the potassium storage mechanism of Bi2Te3, suppresses structural distortion, and accelerates K+ diffusion capacity. The meticulously designed Bi2Te3-x@NPCNFs electrode exhibits ultrastable cycling stability (over 3500 stable cycles at 1.0 A g-1 with a capacity degradation of only 0.01% per cycle) and outstanding rate capability (109.5 mAh g-1 at 2.0 A g-1). Furthermore, the systematic ex situ characterization confirms that the Bi2Te3-x@NPCNFs electrode undergoes an "intercalation-conversion-step alloying" mechanism for potassium storage. Kinetic analysis and density functional theory calculations reveal the excellent pseudocapacitive performance, attractive K+ adsorption, and fast K+ diffusion ability of the Bi2Te3-x@NPCNFs electrode, which is essential for fast potassium-ion storage. Impressively, the assembled Bi2Te3-x@NPCNFs//activated-carbon potassium-ion hybrid capacitors achieve considerable energy/power density (energy density up to 112 Wh kg-1 at a power density of 1000 W kg-1) and excellent cycling stability (1600 cycles at 10.0 A g-1), indicating their potential practical applications.
Collapse
Affiliation(s)
- Gaoyu Wang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiawei Wu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenbo Fan
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lixiang Wang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing ,Zhejiang 314001, China
| | - Zhixin Liang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhijiao Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zeyu Lin
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guang Wang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Junling Wang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
3
|
Huang Z, Yuan Y, Yao Z, Xiu M, Wang Y, Huang Y, Guo S, Yan W. Confining Co 1.11Te 2 nanoparticles within mesoporous hollow carbon combination sphere for fast and ultralong sodium storage. J Colloid Interface Sci 2024; 658:815-826. [PMID: 38154244 DOI: 10.1016/j.jcis.2023.12.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Co1.11Te2 nanoparticles are in-situ uniformly grown within mesoporous hollow carbon combination sphere (MHCCS@Co1.11Te2) using a hard-template and spray drying process, solution impregnation and pyrolysis tellurization. Material characterizations reveal that Co1.11Te2, with a diameter of ∼ 20 nm, is attached to the internal walls of the unit spheres or embedded in the mesopore shells of the unit spheres, presenting a distinctive "ships-in-combination-bottles" nanoencapsulation structure. In sodium-ion half-cells, MHCCS@Co1.11Te2 exhibits excellent cycling stability, achieving reversible capacities of 257 mAh/g at 0.5 A/g after 250 cycles, 235 mAh/g at 1.0 A/g after 300 cycles and 161 mAh/g at 10.0 A/g after 1900 cycles. Electrochemical kinetic analyses and ex-situ characterizations reveal rapid electron/Na+ transport kinetics, prominent surface pseudocapacitive behavior, robust nanocomposite structure, and multi-step conversion reactions of sodium polytellurides. In sodium-ion full-cells, MHCCS@Co1.11Te2 still demonstrates stable cycling performance at 1.0 and 5.0 A/g and excellent rate capability. The superior electrochemical performance is associated with the nanoencapsulation structure based on mesoporous hollow carbon combination spheres, which promotes electron conduction and Na+ transport. The space-confined effect maintains the high electrochemical activity and cycling stability of Co1.11Te2.
Collapse
Affiliation(s)
- Zhouyu Huang
- College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongfeng Yuan
- College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhujun Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shaoyi Guo
- College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weiwei Yan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Li Q, Yu D, Peng J, Zhang W, Huang J, Liang Z, Wang J, Lin Z, Xiong S, Wang J, Huang S. Efficient Polytelluride Anchoring for Ultralong-Life Potassium Storage: Combined Physical Barrier and Chemisorption in Nanogrid-in-Nanofiber. NANO-MICRO LETTERS 2024; 16:77. [PMID: 38190031 PMCID: PMC10774503 DOI: 10.1007/s40820-023-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.
Collapse
Affiliation(s)
- Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Dandan Yu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Wei Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jianlian Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhixin Liang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Junling Wang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zeyu Lin
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shiyun Xiong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Molaei M, Rostami GR, Zardkhoshoui AM, Davarani SSH. In situ tellurization strategy for crafting nickel ditelluride/cobalt ditelluride hierarchical nanostructures: A leap forward in hybrid supercapacitor electrode materials. J Colloid Interface Sci 2024; 653:1683-1693. [PMID: 37816298 DOI: 10.1016/j.jcis.2023.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Advancements in renewable energy conversion can be significantly propelled by optimizing the performance of transition-metal-based electrodes. In this study, we introduce an innovative, in situ tellurization strategy to synthesize novel, flower-like hierarchical structures of nickel ditelluride/cobalt ditelluride (NiTe2/CoTe2) on a nickel foam substrate (labeled as NF/FNCT), making them promising candidates for electrodes in hybrid supercapacitors. Initially, we utilized a hydrothermal method to create flower-like NiCo-layered double hydroxide (NiCo-LDH) nanoarrays on nickel foam (NF/FNCLDH). This process was followed by the tellurization of these nanoarrays, which yields the NiTe₂/CoTe₂ nanostructures. The strategic assembly of active materials on a conductive substrate effectively obviates the need for inert, slow-conductive binders, thereby facilitating redox chemistry. Capitalizing on the synergistic effects of the conductive tellurium and hierarchical flower-like nanomorphology, the NF/FNCT showcases expedited electron/ion transport, enhanced efficiency, and exceptional electrochemical performance. The NF/FNCT electrode discloses an impressive capacity of 1388.9 (±3) C/g, superior rate capability (83.45 % capacity retention at 30 A/g), and remarkable cycling durability of 96.67 %. Furthermore, when integrated with activated carbon (AC), the resultant hybrid supercapacitor delivers a desirable energy density of 58.85 Wh kg-1 at a power density of 806.85 W kg-1, demonstrating commendable rate capability and cycling durability. This investigation opens new avenues for the synthesis of materials for hybrid supercapacitors.
Collapse
Affiliation(s)
- Maryam Molaei
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Wang L, Hu Y, Lim KH, Zhang W. Sandwich-type N-C@CoTe 2@C anode: a stress-buffer nanostructure for stable sodium-ion storage. Dalton Trans 2023; 52:14003-14011. [PMID: 37740283 DOI: 10.1039/d3dt01831h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Transition metal tellurides (TMTes) have received extensive attention for high specific energy sodium-ion batteries (SIBs) due to their high volumetric specific capacity. However, the continuous capacity attenuation arising from the huge volumetric strain during sodiation/desodiation impedes practical applications. Here, we report a "sandwich-type" carbon confinement strategy that entraps cobalt ditelluride (CoTe2) nanocrystals between two carbon layers. Porous cellulose-derived fibres were employed as the inner carbon framework to construct fast conductive circuits and provide an abundant site for anchoring CoTe2 nanocrystals. Polyvinylpyrrolidone (PVP)-derived carbon layers act as carbon armour to encapsulate CoTe2 nanocrystals, inhibiting their volume change and structural pulverization during repeated sodium intercalation/deintercalation. Benefiting from the exquisite structural design, the N-C@CoTe2@C electrode exhibits excellent cycling stability for over 3000 cycles at 2.0 A g-1 and rate performance (113.8 mA h g-1 at 5.0 A g-1). Moreover, ex situ XRD/TEM and kinetic tests revealed a multistep conversion reaction mechanism and a battery-capacitive dual-model Na-storage process. This work provides a new perspective on the development of low-cost and straightforward techniques for fabricating long-life commercial SIB anode materials.
Collapse
Affiliation(s)
- Lixiang Wang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Zhejiang, 314001, China.
| | - Yahua Hu
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Zhejiang, 314001, China.
| | - Khak Ho Lim
- Institute of Zhejiang University-Quzhou, Zhejiang, 324000, China
| | - Wei Zhang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Zhou Q, Yuan L, Li T, Qiao S, Ma M, Wang Y, Chong S. Boosting cobalt ditelluride quantum-rods anode materials for excellent potassium-ion storage via hierarchical physicochemical encapsulation. J Colloid Interface Sci 2023; 646:493-502. [PMID: 37209549 DOI: 10.1016/j.jcis.2023.05.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The exploration of anode materials that can store large-sized K-ion to solve the poor kinetics and large volume expansion issues has become the key scientific bottlenecks hindering the development of potassium-ion batteries (PIBs). Herein, ultrafine CoTe2 quantum rods physiochemically encapsulated by graphene and nitrogen-doped carbon (CoTe2@rGO@NC) are regarded as anode electrodes for PIBs. Dual physicochemical confinement and quantum size effect not only enhance electrochemical kinetics but also restrain large lattice stress during repeated K-ion insertion/extraction process. Superior electronic conductivity, K-ion adsorption, and diffusion ability can be acquired for CoTe2@rGO@NC, confirmed through first-principles calculations and kinetics study. K-ion insertion/extraction proceeds via a typical conversion mechanism relying on Co as the redox site, where the robust chemical bond of COCo plays an important role in maintaining the electrode stability. Accordingly, CoTe2@rGO@NC contributes a high initial capacity of 237.6 mAh·g-1 at 200 mA·g-1, a long lifetime over 500 cycles with low-capacity decay of 0.10% per cycle. This research will lay the materials science foundation for the construction of quantum-rod electrodes.
Collapse
Affiliation(s)
- Qianwen Zhou
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Lingling Yuan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China
| | - Ting Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China
| | - Shuangyan Qiao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meng Ma
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yikun Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China.
| |
Collapse
|
8
|
Fan H, Zhou G, Li J, Zhao Y, Bai L, Chang H, Zheng R, Wang Z, Liu Y, Sun H. Enhanced Interfacial Magnetization is Responsible for the Negative Capacity Fading of Cobalt Ditelluride Anodes for Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300490. [PMID: 37035983 DOI: 10.1002/smll.202300490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
In lithium-ion batteries (LIBs), the stabilized capacities of transition metal compound anodes usually exhibit higher values than their theoretical values due to the interfacial charge storage, the formation of reversible electrolyte-derived surface layer, or interfacial magnetization. But the effectively utilizing the mechanisms to achieve novel anodes is rarely explored. Herein, a novel nanosized cobalt ditelluride (CoTe2 ) anodes with ultra-high capacity and long term stability is reported. Electrochemical tests show that the lithium storage capacity of the best sample reaches 1194.7 mA h g-1 after 150 cycles at 0.12 A g-1 , which increases by 57.8% compared to that after 20 cycles. In addition, the sample offers capacities of 546.6 and 492.1 mA h g-1 at 0.6 and 1.8 A g-1 , respectively. During cycles, CoTe2 particles (average size 20 nm) are gradually pulverized into the smaller nanoparticles (<3 nm), making the magnetization more fully due to the larger contact area of Co/Li2 Te interface, yielding an increased capacity. The negative capacity fading is observed, and verified by ex situ structural characterizations and in situ electrochemical measurements. The proposed strategy can be further extended to obtain other high-performance ferromagnetic metal based electrodes for energy storage applications.
Collapse
Affiliation(s)
- Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
| | - Guangyu Zhou
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
| | - Jinliang Li
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
| | - Yanyan Zhao
- The Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA, 02142, USA
| | - Lu Bai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Huaiqiu Chang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
9
|
Fan H, Liu C, Lan G, Mao P, Zheng R, Wang Z, Liu Y, Sun H. Uniform carbon coating mediated multiphase interface in submicron sized rodlike cobalt ditelluride anodes for high-capacity and fast lithium storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Huy VPH, Kim IT, Hur J. Ga 2Te 3-Based Composite Anodes for High-Performance Sodium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6231. [PMID: 36143546 PMCID: PMC9504644 DOI: 10.3390/ma15186231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Recently, metal chalcogenides have received considerable attention as prospective anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacities based on their alloying or conversion reactions. Herein, we demonstrate a gallium(III) telluride (Ga2Te3)-based ternary composite (Ga2Te3-TiO2-C) synthesized via a simple high-energy ball mill as a great candidate SIB anode material for the first time. The electrochemical performance, as well as the phase transition mechanism of Ga2Te3 during sodiation/desodiation, is investigated. Furthermore, the effect of C content on the performance of Ga2Te3-TiO2-C is studied using various electrochemical analyses. As a result, Ga2Te3-TiO2-C with an optimum carbon content of 10% (Ga2Te3-TiO2-C(10%)) exhibited a specific capacity of 437 mAh·g-1 after 300 cycles at 100 mA·g-1 and a high-rate capability (capacity retention of 96% at 10 A·g-1 relative to 0.1 A·g-1). The good electrochemical properties of Ga2Te3-TiO2-C(10%) benefited from the presence of the TiO2-C hybrid buffering matrix, which improved the mechanical integrity and electrical conductivity of the electrode. This research opens a new direction for the improvement of high-performance advanced SIB anodes with a simple synthesis process.
Collapse
|
11
|
Xu X, Xu L, Zhang P, Zhou JJ, Wang W, Wang W, Yang Y, Ding H, Ji W, Chen L. ZIF-derived twisted wedge-shaped CoS2/NC nanoporous architectures pinned to graphene foam as negative electrode for lithium and sodium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhao W, Zhang W, Lei Y, Wang L, Wang G, Wu J, Fan W, Huang S. Dual-Type Carbon Confinement Strategy: Improving the Stability of CoTe 2 Nanocrystals for Sodium-Ion Batteries with a Long Lifespan. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6801-6809. [PMID: 35099923 DOI: 10.1021/acsami.1c22486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries have great potential to become large-scale energy storage devices due to their abundant and low-cost resources. However, the lack of anode and cathode materials with both high energy density and long-term cycling performance significantly affects their commercial applications. In this work, uniform CoTe2 nanoparticles are generated from the tellurization of Co nanoparticles, which were coated with polyvinylpyrrolidone in a three-dimensional (3D) porous carbon matrix (CoTe2@3DPNC). Finally, a dual-type carbon confinement structure is formed after tellurization during which citric acid is adopted as the source of the inner carbon scaffold. The hierarchical carbon matrix not only builds a robust and fast ion/electronic conductive 3D architecture but also mitigates the volume expansion and aggregation of CoTe2 during sodium insertion/extraction. Remarkably, the CoTe2@3DPNC electrode displays a high reversible capacity (216.5 mAh g-1/627.9 mAh cm-3 at 0.2 A g-1 after 200 cycles) and outstanding long-term cycling performance (118.1 mAh g-1/342.5 mAh cm-3 even at 5.0 A g-1 after 2500 cycles). Kinetics tests and capacitance calculations clearly reveal a battery-capacitive dual-model Na-storage mechanism. Furthermore, ex situ XRD/SEM/TEM demonstrate superior stability during sodium insertion/extraction. This work provides a valuable strategy for the rational structural design of long-life electrodes for advanced rechargeable batteries.
Collapse
Affiliation(s)
- Weiming Zhao
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Zhang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yixi Lei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lixiang Wang
- Tongji Zhejiang College, No.168, Business Road, Jiaxing, Zhejiang 314051, P. R. China
| | - Gaoyu Wang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiawei Wu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenbo Fan
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Fan H, Mao P, Sun H, Wang Y, Mofarah SS, Koshy P, Arandiyan H, Wang Z, Liu Y, Shao Z. Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. MATERIALS HORIZONS 2022; 9:524-546. [PMID: 34806103 DOI: 10.1039/d1mh01587g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal tellurides (MTs) have emerged as highly promising candidate anode materials for state-of-the-art lithium-ion batteries (LIBs) and sodium ion batteries (SIBs). This is owing to the unique crystal structure, high intrinsic conductivity, and high trap density of such materials. The present work delivers a detailed discussion on the latest research and progress associated with the use of MTs for LIBs/SIBs with a focus on reaction mechanisms, challenges, electrochemical performance, and synthesis strategies. Further, the prospects and future development of MT anode materials are discussed in terms of strategies to overcome the existing limitations. This review provides both an in-depth understanding of MTs and provides the driving force for expanding research on MTs for energy storage and conversion applications.
Collapse
Affiliation(s)
- Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Pengcheng Mao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, 2052, Australia
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney 2006, Australia.
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, WA 6845, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|