1
|
Tang X, Song C, Li H, Liu W, Hu X, Chen Q, Lu H, Yao S, Li XN, Lin L. Thermally stable Ni foam-supported inverse CeAlO x/Ni ensemble as an active structured catalyst for CO 2 hydrogenation to methane. Nat Commun 2024; 15:3115. [PMID: 38600102 PMCID: PMC11006838 DOI: 10.1038/s41467-024-47403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Nickel is the most widely used inexpensive active metal center of the heterogeneous catalysts for CO2 hydrogenation to methane. However, Ni-based catalysts suffer from severe deactivation in CO2 methanation reaction due to the irreversible sintering and coke deposition caused by the inevitable localized hotspots generated during the vigorously exothermic reaction. Herein, we demonstrate the inverse CeAlOx/Ni composite constructed on the Ni-foam structure support realizes remarkable CO2 methanation catalytic activity and stability in a wide operation temperature range from 240 to 600 °C. Significantly, CeAlOx/Ni/Ni-foam catalyst maintains its initial activity after seven drastic heating-cooling cycles from RT to 240 to 600 °C. Meanwhile, the structure catalyst also shows water resistance and long-term stability under reaction condition. The promising thermal stability and water-resistance of CeAlOx/Ni/Ni-foam originate from the excellent heat and mass transport efficiency which eliminates local hotspots and the formation of Ni-foam stabilized CeAlOx/Ni inverse composites which effectively anchored the active species and prevents carbon deposition from CH4 decomposition.
Collapse
Affiliation(s)
- Xin Tang
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haibo Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenyu Liu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyu Hu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiaoli Chen
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hanfeng Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Nian Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Cho J, Kim B, Venkateshalu S, Chung DY, Lee K, Choi SI. Electrochemically Activatable Liquid Organic Hydrogen Carriers and Their Applications. J Am Chem Soc 2023; 145:16951-16965. [PMID: 37439128 DOI: 10.1021/jacs.2c13324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Hydrogen has been chosen as an environmentally benign energy source to replace fossil-fuel-based energy systems. Since hydrogen is difficult to store and transport in its gaseous phase, thermochemical liquid organic hydrogen carriers (LOHCs) have been developed as one of the alternative technologies. However, the high temperature and pressure requirements of thermochemical LOHC systems result in huge energy waste and impracticality. This Perspective proposes electrochemical (EC)-LOHCs capable of more efficient, safer, and lower temperature and pressure hydrogen storage/utilization. To enable this technology, several EC-LOHC candidates such as isopropanol, phenolic compounds, and organic acids are described, and the latest research trends and design concepts of related homo/hetero-based electrocatalysts are discussed. In addition, we propose efficient fuel-cell-based systems that implement electrochemical (de)hydrogenation of EC-LOHCs and present prospects for relevant technologies.
Collapse
Affiliation(s)
- Juhyun Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Obeso JL, López-Olvera A, Flores CV, Peralta RA, Ibarra IA, Leyva C. Gas-phase organometallic catalysis in MFM-300(Sc) provided by switchable dynamic metal sites. Chem Commun (Camb) 2023; 59:3273-3276. [PMID: 36825543 DOI: 10.1039/d2cc06935k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
MFM-300(Sc) was explored as a catalyst for the gas-phase hydrogenation of acetone. The catalysis results support the presence of non-permanent open Sc(III) sites within the structure due to the requirement of Lewis acid sites for the reaction to proceed. The open Sc(III) sites are generated in situ due to the presence of hemilabile Sc-O bonds. MFM-300(Sc) showed high mechanical and chemical stability, and the crystalline structure was maintained after the catalytic reaction. The catalytic activity of the material was quantified by performing a gas-phase reaction using a continuous flow reactor. The acetone conversion in MFM-300(Sc) was estimated to be 27.7% with no loss of activity after catalytic cycles.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico. .,Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Catalina V Flores
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Iztapalapa (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
4
|
Liu K, Zhang T, Liu X, Wang T, Su Y, Wang H, Sun L, Cao X, Bi Y, Wang K, Zhang L. Influence of reduction temperature on Pt–ZrO 2 interfaces for the gas-phase hydrogenation of acetone to isopropanol. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Pt/ZrO2 reduced at 200 °C offers higher Ov and Pt0 contents, thus leading to excellent acetone hydrogenation activity.
Collapse
|