1
|
Fang J, Wu K, Qin L, Li J, Li A, Feng H. Reversible silicon anodes enabled by fluorinated inorganic-organic hybrid coating. J Colloid Interface Sci 2024; 679:819-829. [PMID: 39481356 DOI: 10.1016/j.jcis.2024.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
Silicon anodes deliver batteries with energy densities much higher than those based on today's dominant graphite anodes. However, they commonly exhibit huge volume variations and unfavorable interface stability, causing a gradually diminishing capacity on extended cycling. Most Si-based batteries consisting Si/C composites in industry can only use a very limited amount of Si (<30 % by weight). Exploiting molecular layer deposition (MLD) technique, a fluorine-rich flexible inorganic-organic hybrid alucone (AlFHQ) shell is controllably deposited onto Si electrodes. Employing ex situ XPS and AFM, the AlFHQ film presents reversible electrochemical evolutions in terms of composition and morphology. The interactions the between Li+ and -O-2,3,5,6-fluorobenzene functional groups help to construct a mechanically-chemically robust LiF-rich hybrid solid electrolyte interphase (SEI) on Si anode, delivering enhanced interfacial stability and integrity of electrode. An optimized coating thickness (≈5 nm) for interfacial stabilization and Li+ transport kinetics is demonstrated, namely, Si@AlFHQ-20. The reported fluorine-rich hybrid modification technique endows (a), stable cycling of Si anode (≈3.8 mAh cm-2) with an ultrahigh initial Coulombic efficiency (ICE) of 92.3 %; (b), enhanced rate capability of 1468 mAh/g at 2.0 A g-1 and good cycling performance; and (c), overall cell (Si@AlFHQ-20//LiCoO2@Al2O3) operational stability for more than 100 cycles under stringent cathode conditions (2.68 mAh cm-2, high cutoff voltage at 4.55 V).
Collapse
Affiliation(s)
- Jiabin Fang
- Laboratory of Material Surface Engineering and Nanofabrication, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Kang Wu
- Laboratory of Material Surface Engineering and Nanofabrication, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Lijun Qin
- Laboratory of Material Surface Engineering and Nanofabrication, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Jianguo Li
- Laboratory of Material Surface Engineering and Nanofabrication, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Aidong Li
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hao Feng
- Laboratory of Material Surface Engineering and Nanofabrication, Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China.
| |
Collapse
|
2
|
Li D, Pan K, Li A, Jiang J, Wu Y, Li J, Zheng F, Xie F, Wang H, Pan Q. Well-Dispersed Bi nanoparticles for promoting the lithium storage performance of Si Anode: Effect of the bridging Bi nanoparticles. J Colloid Interface Sci 2024; 659:611-620. [PMID: 38198938 DOI: 10.1016/j.jcis.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Silicon (Si) is considered a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical specific capacity of up to 4200 mAh/g. However, the poor cycling and rate performances of Si induced by the low intrinsic electronic conductivity and large volume expansion during the lithiation/delithiation process limit its practical application. Herein, a novel silicon/bismuth@nitrogen-doped carbon (Si/Bi@NC) composite with nanovoids was synthesized and investigated as an advanced anode material for LIBs. In such a structure, ultrafine bismuth nanoparticles coupled with an N-doped carbon layer were introduced to modify the surface of Si nanoparticles. Subsequently, the lithiated LixBi has excellent high ionic conductivity and acts as a fast transport bridge for lithium ions. The introduced carbon coating layer and nanovoids can buffer the volume expansion of Si during the lithiation/delithiation process, thus maintaining structural stability during the cycling process. As a result, the Si/Bi@NC composite exhibits excellent electrochemical performance, providing a relatively high capacity of 955.8 mAh/g at 0.5 A/g after 450 cycles and excellent rate performance with a high capacity of 477.8 mAh/g even at 10.0 A/g. Furthermore, the assembled full cell with LiFePO4 as cathode and pre-lithium Si/Bi@NC as anode can provide a high capacity of 138.8 mAh/g at 1C after 90 cycles, exhibiting outstanding cycling performance.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kai Pan
- Institute of New Functional Materials, Guangxi Institute of Industrial Technology, Nanning 530200, China
| | - Anqi Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Juantao Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yao Wu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiakun Li
- Wuzhou Tongchuang New Energy Materials Co., Ltd, Wuzhou 543000, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Fengqiang Xie
- Wuzhou Tongchuang New Energy Materials Co., Ltd, Wuzhou 543000, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Kim S, Seo B, Ramasamy HV, Shang Z, Wang H, Savoie BM, Pol VG. Ion-Solvent Interplay in Concentrated Electrolytes Enables Subzero Temperature Li-Ion Battery Operations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41934-41944. [PMID: 36084339 DOI: 10.1021/acsami.2c09338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the essential role of ethylene carbonate (EC) in solid electrolyte interphase (SEI) formation, the high Li+ desolvation barrier and melting point (36 °C) of EC impede lithium-ion battery operation at low temperatures and induce sluggish Li+ reaction kinetics. Here, we demonstrate an EC-free high salt concentration electrolyte (HSCE) composed of lithium bis(fluorosulfonyl)imide salt and tetrahydrofuran solvent with enhanced subzero temperature operation originating from unusually rapid low-temperature Li+ transport. Experimental and theoretical characterizations reveal the dominance of intra-aggregate ion transport in the HSCE that enables efficient low-temperature transport by increasing the exchange rate of solvating counterions relative to that of solvent molecules. This electrolyte also produces a <5 nm thick anion-derived LiF-rich SEI layer with excellent graphite electrode compatibility and electrochemical performance at subzero temperature in half-cells. Full cells based on LiNi0.6Co0.2Mn0.2O2||graphite with tailored HSCE electrolytes outperform state-of-the-art cells comprising conventional EC electrolytes during charge-discharge operation at an extreme temperature of -40 °C. These results demonstrate the opportunities for creating intrinsically robust low-temperature Li+ technology.
Collapse
Affiliation(s)
- Soohwan Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bumjoon Seo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hari Vignesh Ramasamy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhongxia Shang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vilas G Pol
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|