1
|
Zhen Z, Gao X, Chen J, Chen Y, Chen X, Cui L. Research Progress on Ni-Based Electrocatalysts for the Electrochemical Reduction of Nitrogen to Ammonia. Chemistry 2024:e202402562. [PMID: 39210677 DOI: 10.1002/chem.202402562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to synthesize ammonia (NH3) is considered as a promising method due to its approvable advantages of zero-pollution emission, feasible reaction proceedings, good safety and easy management. The multiple efforts have been devoted to the exploration of earth-abundant-element-based nanomaterials as high-efficiency electrocatalysts for realizing their industrial applications. Among these, the Ni-based nanomaterials is prioritized as an attractive non-noble-metal electrocatalysts for catalyzing NRR because they are earth-abundance and exceedingly easy to synthesize as well as also delivers the potential of high electrocatalytic activity and durability. In this review, after briefly elucidating the underlying mechanisms of NRR during the electrochemical process, we systematically sum up the recent research progress in representative Ni-based electrocatalysts, including monometallic Ni-based nanomaterials, bimetallic Ni-based nanomaterials, polymetallic Ni-based nanomaterials, etc. In particular, we discuss the effects of physicochemical properties, such as phases, crystallinity, morphology, composition, defects, heteroatom doping, and strain engineering, on the comprehensive performance of the abovementioned electrocatalysts, with the aim of establishing the nanostructure-function relationships of the electrocatalysts. In addition, the promising directions of Ni-based electrocatalysts for NRR are also pointed out and highlighted. The generic approach in this review may expand the frontiers of NRR and provides the inspiration for developing high-efficiently Ni-based electrocatalysts.
Collapse
Affiliation(s)
- Zheng Zhen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Gao
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Chen
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Akter R, Shah SS, Ehsan MA, Shaikh MN, Zahir MH, Aziz MA, Ahammad AJS. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy. Chem Asian J 2024; 19:e202300797. [PMID: 37812018 DOI: 10.1002/asia.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
Ammonia (NH3), a cornerstone in the chemical industry, has historically been pivotal for producing various valuable products, notably fertilizers. Its significance is further underscored in the modern energy landscape, where NH3 is seen as a promising medium for hydrogen storage and transportation. However, the conventional Haber-Bosch process, which accounts for approximately 170 million ton of NH3 produced globally each year, is energy-intensive and environmentally damaging. The electrochemical nitrogen reduction reaction (NRR) emerges as a sustainable alternative that operates in ambient conditions and uses renewable energy sources. Despite its potential, the NRR faces challenges, including the inherent stability of nitrogen and its competition with the hydrogen evolution reaction. Transition metals, especially ruthenium (Ru) and molybdenum (Mo), have demonstrated promise as catalysts, enhancing the efficiency of the NRR. Ru excels in catalytic activity, while Mo offers robustness. Strategies like heteroatom doping are being pursued to mitigate NRR challenges, especially the competing hydrogen evolution reaction. This review delves into the advancements of Ru and Mo-based catalysts for electrochemical ammonia synthesis, elucidating the NRR mechanisms, and championing the transition towards a greener ammonia economy. It also seeks to elucidate the core principles underpinning the NRR mechanism. This shift aims not only to address challenges inherent to traditional production methods but also to align with the overarching goals of global sustainability.
Collapse
Affiliation(s)
- Riva Akter
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
3
|
Hu YZ, Wei GP, Zhao YX, Liu QY, He SG. Experimental Reactivity of (MoO 3) NO - ( N = 1-21) Cluster Anions with C 1-C 4 Alkanes: A Simple Model to Predict the Reactivity with Methane. J Phys Chem A 2024; 128:5253-5259. [PMID: 38937133 DOI: 10.1021/acs.jpca.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.
Collapse
Affiliation(s)
- Yu-Zhe Hu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Li K, Ding L, Xie Z, Yang G, Yu S, Wang W, Cullen DA, Meyer HM, Hu G, Ganesh P, Watkins TR, Zhang FY. Robust Copper-Based Nanosponge Architecture Decorated by Ruthenium with Enhanced Electrocatalytic Performance for Ambient Nitrogen Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11703-11712. [PMID: 36812428 DOI: 10.1021/acsami.2c20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 μg h-1 mgcat.-1 (corresponding to 10.5 μg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.
Collapse
Affiliation(s)
- Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Gaoqiang Yang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - David A Cullen
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry M Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guoxiang Hu
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas R Watkins
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
5
|
Yu X, Qiu P, Wang Y, He B, Xu X, Zhu H, Ding J, Liu X, Li Z, Wang Y. Defect-induced charge redistribution of MoO 3-x nanometric wires for photocatalytic ammonia synthesis. J Colloid Interface Sci 2023; 640:775-782. [PMID: 36907146 DOI: 10.1016/j.jcis.2023.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Photocatalytic ammonia synthesis technology has become one of the effective methods to replace the Haber method for nitrogen fixation in the future for its low energy consumption and green environment. However, limited by the weak adsorption/activation ability of N2 molecules at the photocatalyst interface, the efficient nitrogen fixation still remains a daunting job. Defect-induced charge redistribution as a catalytic site for N2 molecules is the most prominent strategy to enhance the adsorption/activation of N2 molecules at the interface of catalysts. In this study, MoO3-x nanowires containing asymmetric defects were prepared by a one-step hydrothermal method via using glycine as a defect inducer. It is shown that at the atomic scale, the defect-induced charge reconfiguration can significantly improve the nitrogen adsorption and activation capacity and enhance the nitrogen fixation capacity; at the nanoscale, the charge redistribution induced by asymmetric defects effectively improved the photogenerated charge separation. Given the charge redistribution on the atomic and nanoscale of MoO3-x nanowires, the optimal nitrogen fixation rate of MoO3-x reached 200.35 µmol g-1h-1.
Collapse
Affiliation(s)
- Xinru Yu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Peng Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yongchao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bing He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xiangran Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Huiling Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jian Ding
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Fan S, Wang Q, Hu Y, Zhao Q, Li J, Liu G. Efficient electrocatalytic conversion of N2 to NH3 using oxygen-rich vacancy lithium niobate cubes. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Luo Y, Cao S, Du X, Wang Y, Li J. Nitrogen reduction reaction mechanism on Fe-doped TiO2 from theoretical perspective: A kinetic and electronic structure study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Li J, Wang Y, Lu X, Guo K, Xu C. Increased Oxygen Vacancies in CeO 2 for Improved Electrocatalytic Nitrogen Reduction Performance. Inorg Chem 2022; 61:17242-17247. [PMID: 36268836 DOI: 10.1021/acs.inorgchem.2c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical nitrogen fixation is a sustainable and economical strategy to produce ammonia. However, fabricating efficient electrocatalysts for nitrogen fixation is still challenging. Theoretical predictions prove that the oxygen vacancy is able to modulate the electronic state of CeO2 and enhance its electrical conductivity, thus promoting the electrochemical nitrogen reduction reaction (NRR) process. Herein, CeO2 with high oxygen vacancy concentration was prepared via a two-step pyrolysis strategy of Ce metal-organic frameworks (MOFs, denoted H-CeO2). Compared to CeO2 with low oxygen vacancy concentration synthesized via one-step pyrolysis of Ce-MOFs (denoted L-CeO2), H-CeO2 exhibits a large NH3 yield rate (25.64 μg h-1 mgcat-1 at -0.5 V vs reversible hydrogen electrode, RHE) and high faradaic efficiency (FE, 6.3% at -0.4 V vs RHE).
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoying Lu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kailu Guo
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Xiu Z, Zheng M, Li J, Wei F, Dong C, Zhang M, Zhou X, Han X. Fe-VS 2 Electrocatalyst with Organic Matrix-Mediated Electron Transfer for Highly Efficient Nitrogen Fixation. CHEMSUSCHEM 2022; 15:e202200741. [PMID: 35670288 DOI: 10.1002/cssc.202200741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical N2 fixation is considered to be a promising alternative to Haber-Bosch technology. Inspired by the composition and structure of natural nitrogenase, Fe-doped VS2 nanosheets were prepared via one-step solvothermal method. The electron transfer system mediated by organic conductive polymer (1-AAQ-PA) was constructed to promote the electron transfer between Fe-VS2 nanosheets and the electrode in electrocatalytic N2 reduction reaction (NRR). The obtained 1-AAQ-PA-Fe-VS2 electrode converted N2 to NH3 with a yield of 31.6 μg h-1 mg-1 at -0.35 V vs. reversible hydrogen electrode and high faradaic efficiency of 23.5 %. The introduction of Fe dopants favored N2 adsorption and activation, while the Li-S bond between Fe-VS2 and Li2 SO4 effectively inhibited hydrogen evolution. The highly efficient electron utilization in the electrocatalytic NRR process was realized using the 1-AAQ-PA as the electron transfer medium. Density functional theory calculations showed that N2 was preferentially adsorbed on Fe and reduced to NH3 via both distal and alternating mechanism.
Collapse
Affiliation(s)
- Ziyuan Xiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Mingrui Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| |
Collapse
|
11
|
Tang W, Zhu S, Jiang H, Liang Y, Li Z, Wu S, Cui Z. Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution. J Colloid Interface Sci 2022; 625:606-613. [PMID: 35764042 DOI: 10.1016/j.jcis.2022.06.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 01/09/2023]
Abstract
Efficient catalysts with low costs are very important for hydrogen production. In this work, a nanoporous CoMoP (np-CoMoP) bimetallic phosphide catalyst with a self-supporting structure was prepared by the electrochemical dealloying method. The introduction of Mo tuned the electronic structures around Co and P, optimized the desorption of the H atom, and improved the catalytic activity of cobalt phosphide. The prepared nanoporous Co65Mo15P20 (np-Co65Mo15P20) structures promoted electron transfer and provided more active sites, exhibiting superior hydrogen evolution reaction (HER) performance with the overpotential of 40.8 mV at 10 mA cm-2 and Tafel slope of 46.2 mV dec-1 in alkaline solution. Also, the catalysts exhibited good long-term stability.
Collapse
Affiliation(s)
- Weiguo Tang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China; Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China; School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China; Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China; Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China; Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China; Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Li Q, Shen P, Tian Y, Li X, Chu K. Metal-free BN quantum dots/graphitic C 3N 4 heterostructure for nitrogen reduction reaction. J Colloid Interface Sci 2022; 606:204-212. [PMID: 34388571 DOI: 10.1016/j.jcis.2021.08.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Exploring high-efficiency metal-free electrocatalysts towards N2 reduction reaction (NRR) is of great interest for the development of electrocatalytic N2 fixation technology. Herein, we combined boron nitride quantum dots (BNQDs) and graphitic carbon nitride (C3N4) to design a metal-free BNQDs/C3N4 heterostructure as an effective and durable NRR catalyst. The electronically coupled BNQDs/C3N4 presented an NH3 yield as high as 72.3 μg h-1 mg-1 (-0.3 V) and a Faradaic efficiency of 19.5% (-0.2 V), far superior to isolated BNQDs and C3N4, and outperforming nearly all previously reported metal-free catalysts. Theoretical computations unveiled that the N2 activation could be drastically enhanced at the BNQDs-C3N4 interface where interfacial BNQDs and C3N4 cooperatively adsorb N2 and stabilize *N2H intermediate, leading to the significantly promoted NRR process with an ultra-low overpotential of 0.23 V.
Collapse
Affiliation(s)
- Qingqing Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ye Tian
- Department of Physics, College of Science, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
13
|
Zhao M, Guo C, Gao L, Yang H, Liu C, Kuang X, Sun X, Wei Q. Cation Decorated Ferric Oxide with a Polyhedral‐like Structure for the Electrocatalytic Nitrogen Reduction Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingzhu Zhao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252059 P. R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Chengying Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Lingfeng Gao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252059 P. R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Hua Yang
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252059 P. R. China
| | - Chengqing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering Institution University of Jinan Jinan, Shandong 250022 P. R. China
| |
Collapse
|
14
|
Ruan M, Zhao YX, Zhang MQ, He SG. Methane Activation by (MoO 3 ) 5 O - Cluster Anions: The Importance of Orbital Orientation. Chemistry 2021; 28:e202103321. [PMID: 34672031 DOI: 10.1002/chem.202103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/07/2022]
Abstract
The reactivity of the molybdenum oxide cluster anion (MoO3 )5 O- , bearing an unpaired electron at a bridging oxygen atom (Ob .- ), towards methane under thermal collision conditions has been studied by mass spectrometry and density functional theory calculations. This reaction follows the mechanism of hydrogen atom transfer (HAT) and is facilitated by the Ob .- radical center. The reactivity of (MoO3 )5 O- can be traced back to the appropriate orientation of the lowest unoccupied molecular orbitals (LUMO) that is essentially the 2p orbital of the Ob .- atom. This study not only makes up the blank of thermal methane activation by the Ob .- radical on negatively charged clusters but also yields new insights into methane activation by the atomic oxygen radical anions.
Collapse
Affiliation(s)
- Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Mei-Qi Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
Luo Y, Shen P, Li X, Guo Y, Chu K. MoS 2 quantum dots for electrocatalytic N 2 reduction. Chem Commun (Camb) 2021; 57:9930-9933. [PMID: 34498632 DOI: 10.1039/d1cc03795a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that MoS2 quantum dots (QDs) can be an effective and durable catalyst for the electrocatalytic N2 reduction reaction (NRR), showing an NH3 yield of 39.6 μg h-1 mg-1 with a faradaic efficiency of 12.9% at -0.3 V, far superior to MoS2 nanosheets and outperforming most reported NRR catalysts. Density functional theory computations unravel that the MoS2 QDs can dramatically facilitate N2 adsorption and activation via side-on patterns, resulting in an energetically-favored enzymatic pathway with an ultra-low overpotential of 0.29 V.
Collapse
Affiliation(s)
- Yaojing Luo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|