1
|
Zhu TT, Zhao Y, Li QK, Gao SS, Chi CL, Tang SL, Chen XB. High-Throughput Screening Strategy for Electrocatalysts for Selective Catalytic Oxidation of Formaldehyde to Formic Acid. J Phys Chem Lett 2024; 15:6183-6189. [PMID: 38836642 DOI: 10.1021/acs.jpclett.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrocatalytic oxidation of formaldehyde (FOR) is an effective way to prevent the damage caused by formaldehyde and produce high-value products. A screening strategy of a single-layer MnO2-supported transition metal catalyst for the selective oxidation of formaldehyde to formic acid was designed by high-throughput density functional calculation. N-MnO2@Cu and MnO2@Cu are predicted to be potential FOR electrocatalysts with potential-limiting steps (PDS) of 0.008 and -0.009 eV, respectively. Electronic structure analysis of single-atom catalysts (SACs) shows that single-layer MnO2 can regulate the spin density of loaded transition metal and thus regulate the adsorption of HCHO (Ead), and Ead is volcanically distributed with the magnetic moment descriptor -|mM - mH|. In addition, the formula quantifies Ead and |mM - mH| to construct a volcano-type descriptor α describing the PDS [ΔG(*CHO)]. Other electronic and structural properties of SACs and α are used as input features for the GBR method to construct machine learning models predicting the PDS (R2 = 0.97). This study hopes to provide some insights into FOR electrocatalysts.
Collapse
Affiliation(s)
| | - Ying Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Qing-Kai Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuai-Shuai Gao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Chun-Lei Chi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuang-Ling Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Xue-Bo Chen
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100091, P. R. China
| |
Collapse
|
2
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Qin M, Wang M, Lei S, Liu C, Tang J. Waste to treasure: Electrocatalytic upcycling of n-valeraldehyde to octane by Zn-Co bimetallic oxide with atomic level cation defect. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133256. [PMID: 38159515 DOI: 10.1016/j.jhazmat.2023.133256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
n-Valeraldehyde is widely used in organic synthesis field as an important intermediate and feedstock, which makes it a significant class of environmental pollutants. In view of the high poisonous and harmful of n-valeraldehyde to human health and ecological environment, it is important to develop green and sustainable technology to reduce the pollution of n-valeraldehyde. In this work, electrocatalytic n-valeraldehyde oxidation using Zn-Co bimetallic oxides was applied to control n-valeraldehyde contamination and highly valuable octane production. To further improve the performance of Zn-Co bimetallic oxides, atomic level Zn vacancies were created across the Zn-Co bimetallic oxides (dx-ZnCo2O4) by post-etching and oxygen vacancy filling methods. Electrochemical experiments results showed that dx-ZnCo2O4 owned a much higher octane yield (1193.4 µmol g-1 h-1) and octane selectivity (octane/butene ≈10). Theoretical calculations demonstrated that the introduction of atomic level Zn vacancies in Zn-Co bimetallic oxide changed the electronic distribution around O, Co and Zn atoms, resulted in an alteration in n-valeraldehyde adsorption sites from Co to Zn, reduced the formation barrier of key intermediate *C4H9 and facilitated the transfer of n-valeraldehyde to octane. This study provides a new idea for the development of high-performance electrocatalysts for controlling n-valeraldehyde pollution.
Collapse
Affiliation(s)
- Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China.
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, 210096 Nanjing, China
| | - Shuangying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, 210096 Nanjing, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| |
Collapse
|
4
|
Qin M, Fan S, Li X, Niu Z, Bai C, Chen G. Highly Efficient Electrocatalytic Upgrade of n-Valeraldehyde to Octane over Au SACs-NiMn 2 O 4 Spinel Synergetic Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201359. [PMID: 35768281 DOI: 10.1002/smll.202201359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In this work, electrocatalytic upgrade of n-valeraldehyde to octane with higher activity and selectivity is achieved over Au single-atom catalysts (SACs)-NiMn2 O4 spinel synergetic composites. Experiments combined with density functional theory calculation collaboratively demonstrate that Au single-atoms occupy surface Ni2+ vacancies of NiMn2 O4 , which play a dominant role in n-valeraldehyde selective oxidation. A detailed investigation reveals that the initial n-valeraldehyde molecule preferentially adsorbs on the Mn tetrahedral site of NiMn2 O4 spinel synergetic structures, and the subsequent n-valeraldehyde molecule easily adsorbs on the Ni site. Specifically, Au single-atom surficial derivation over spinel lowers the adsorption energy (Eads ) of the initial n-valeraldehyde molecule, which will facilitate its adsorption on the Mn site of Au SACs-NiMn2 O4 . Furthermore, the single-atom Au surficial derivation not only alters the electronic structure of Au SACs-NiMn2 O4 but also lower the Eads of subsequent n-valeraldehyde molecule. Hence, the subsequent n-valeraldehyde molecules prefer adsorption on Au sites rather than Ni sites, and the process of two alkyl radicals originating from Mn-C4 H9 and Au-C4 H9 dimerization into an octane is accordingly accelerated. This work will provide an avenue for the rational design of SACs and supply a vital mechanism for understanding the electrocatalytic upgrade of n-valeraldehyde to octane.
Collapse
Affiliation(s)
- Meichun Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shiying Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xinyong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaodong Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunpeng Bai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guohua Chen
- Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|