1
|
Zhang X, Valencia A, Li W, Ao K, Shi J, Yue X, Zhang R, Daoud WA. Decoupling Activation and Transport by Electron-Regulated Atomic-Bi Harnessed Surface-to-Pore Interface for Vanadium Redox Flow Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305415. [PMID: 37607471 DOI: 10.1002/adma.202305415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Vanadium redox flow battery (VRFB) promises a route to low-cost and grid-scale electricity storage using renewable energy resources. However, the interplay of mass transport and activation processes of high-loading catalysts makes it challenging to drive high-performance density VRFB. Herein, a surface-to-pore interface design that unlocks the potential of atomic-Bi-exposed catalytic surface via decoupling activation and transport is reported. The functional interface accommodates electron-regulated atomic-Bi catalyst in an asymmetric Bi─O─Mn structure that expedites the V3+ /V2+ conversion, and a mesoporous Mn3 O4 sub-scaffold for rapid shuttling of redox-active species, whereby the site accessibility is maximized, contrary to conventional transport-limited catalysts. By in situ grafting this interface onto micron-porous carbon felt (Bi1 -sMn3 O4 -CF), a high-performance flow battery is achieved, yielding a record high energy efficiency of 76.72% even at a high current density of 400 mA cm-2 and a peak power density of 1.503 W cm-2 , outdoing the battery with sMn3 O4 -CF (62.60%, 0.978 W cm-2 ) without Bi catalyst. Moreover, this battery renders extraordinary durability of over 1500 cycles, bespeaking a crucial breakthrough toward sustainable redox flow batteries (RFBs).
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Weilu Li
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Kelong Ao
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Jihong Shi
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Xian Yue
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
2
|
Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: merits and applications. Chem Soc Rev 2023; 52:8410-8446. [PMID: 37947236 DOI: 10.1039/d3cs00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Redox flow batteries (RFBs) are promising electrochemical energy storage systems, offering vast potential for large-scale applications. Their unique configuration allows energy and power to be decoupled, making them highly scalable and flexible in design. Aqueous RFBs stand out as the most promising technologies, primarily due to their inexpensive supporting electrolytes and high safety. For aqueous RFBs, there has been a skyrocketing increase in studies focusing on the development of advanced functional materials that offer exceptional merits. They include redox-active materials with high solubility and stability, electrodes with excellent mechanical and chemical stability, and membranes with high ion selectivity and conductivity. This review summarizes the types of aqueous RFBs currently studied, providing an outline of the merits needed for functional materials from a practical perspective. We discuss design principles for redox-active candidates that can exhibit excellent performance, ranging from inorganic to organic active materials, and summarize the development of and need for electrode and membrane materials. Additionally, we analyze the mechanisms that cause battery performance decay from intrinsic features to external influences. We also describe current research priorities and development trends, concluding with a summary of future development directions for functional materials with valuable insights for practical applications.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
3
|
Zhang X, Ye X, Valencia A, Liu F, Ao K, Yue X, Shi J, Daoud WA, Zhou X. Asymmetric Chemical Potential Activated Nanointerfacial Electric Field for Efficient Vanadium Redox Flow Batteries. ACS NANO 2023; 17:21799-21812. [PMID: 37862692 DOI: 10.1021/acsnano.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Constructing active sites with enhanced intrinsic activity and accessibility in a confined microenvironment is critical for simultaneously upgrading the round-trip efficiency and lifespan of all-vanadium redox flow battery (VRFB) yet remains under-explored. Here, we present nanointerfacial electric fields (E-fields) featuring outstanding intrinsic activity embodied by binary Mo2C-Mo2N sublattice. The asymmetric chemical potential on both sides of the reconstructed heterogeneous interface imposes the charge movement and accumulation near the atomic-scale N-Mo-C binding region, eliciting the configuration of an accelerator-like E-field from Mo2N to Mo2C sublattice. Supported with theoretical calculations and intrinsic activity tests, the improved vanadium ion adsorption behavior and charge-transfer process at the nanointerfacial sites were further substantiated, hence expediting the electrochemical kinetics. Accordingly, the pronounced promotion is achieved in the resultant flow battery, yielding an energy efficiency of 77.7% and an extended lifespan of 1000 cycles at 300 mA cm-2, outperforming flow cells with conventional single catalysts in most previous reports.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Xiaolin Ye
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Fei Liu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Kelong Ao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Xian Yue
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518060, China
| | - Jihong Shi
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Xuelong Zhou
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Zhang X, Ao K, Daoud WA. Nano-sphere RuO 2 embedded in MOF-derived carbon arrays as a dual-matrix anode for cost-effective electrochemical wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161126. [PMID: 36587675 DOI: 10.1016/j.scitotenv.2022.161126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The electrodes' activity, surface area and cost hinder the deployment of electrochemical wastewater treatment. Using an economical microfiber-based carbon felt (CF) substrate, we design RuO2 nanospheres confined by CoxO cooperated carbon nanoarrays (RuO2-CoxO@TCF) to augment noble metal utilization and thus reduce the catalyst cost. RuO2-CoxO@TCF anode with vertical diffusion channels exhibits rapid generation ability of oxidizing species particularity in the presence of Cl- ions, which play a crucial role in azo bond cleavage and benzene ring chlorination of methyl orange. As a result, the catalyst shows 99.5 % color removal and ∼ 70 % mineralization efficiency at a concentration of 60 ppm. In synthetic dyeing wastewater, RuO2-CoxO@TCF delivers a stable total organic carbon (TOC) removal throughout ten cycling tests. Moreover, the electricity consumption of RuO2-CoxO@TCF is far below the reference anode, showing great promise for dye degradation and remediation of industrial wastewater.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Kelong Ao
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
5
|
Wu M, Fang M, Nan M, Chen X, Ma X. Recent Advances for Electrode Modifications in Flow Batteries: Properties, Mechanisms, and Outlooks. Chem Asian J 2023; 18:e202201242. [PMID: 36644999 DOI: 10.1002/asia.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
Flow batteries (FBs) have been demonstrated in several large-scale energy storage projects, and are considered to be the preferred technique for large-scale long-term energy storage in terms of their high safety, environmental friendliness, and long life, including all-vanadium flow batteries (VFBs) and Fe-Cr flow batteries (ICFBs). As the electrochemical reaction site, the electrode parameters, such as the specific surface area, active site, and so on, have a significant impact on the flow battery performance and reliability. Extensive research has been carried out on electrode modification to improve the current density and energy efficiency of the FBs. In this review, the reaction mechanisms of VFBs and ICFBs are discussed in detail firstly, and then the electrodes modification methods are overviewed and summarized from four aspects: self-modification, carbon-based electrocatalysts, metal-based electrocatalysts and composite electrocatalysts. Finally, the recent catalytic mechanism, in situ characterization technology, and future research directions are presented.
Collapse
Affiliation(s)
- Min Wu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Maolin Fang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Mingjun Nan
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Xiangnan Chen
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Xiangkun Ma
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| |
Collapse
|