1
|
Zhang Q, Yang YL, Guo D, Hong JM. Cu 3(hexaamino triphenylhexane) 2/reduced graphene oxide composites with boosting electron-transfer properties for acetaminophen electrocatalytic degradation. CHEMOSPHERE 2023; 338:139444. [PMID: 37442382 DOI: 10.1016/j.chemosphere.2023.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Electron-transfer properties, as great contributors for electrocatalytic oxidation on the anode, are crucial to pollution degradation. The strong relationship between electron-transfer properties and active species (such as radicals) generation of anode catalysts suggests a new strategy for pollution-degradation efficiency improvement. In this study, a novel composite of Cu3(hexaamino triphenylhexane)2 [Cu3(HITP)2] and reduced graphene oxide (RGO) was synthesized to construct electron-transfer pathways between the two layers. Benefiting from the connection formed through RGO-O-N-Cu, the electron transfer from RGO to Cu3(HITP)2 was accelerated. The resettled charge distribution led the C atoms in the RGO layer, and the Cu and C atoms in Cu3(HITP)2 layer acted as the main surface active sites. O2•-, 1O2, and reactive chlorine were then triggered to boost the degradation of acetaminophen. The source of O2•- and 1O2 was more likely from surface oxygen groups rather than dissolved O2. Overall, this research provided a perspective proof of conductive Cu3(HITP)2/RGO composite construction with 2D/2D structure for electrocatalytic-oxidation improvement.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Yan Ling Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Die Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
2
|
Xu S, Liu X, Wu J, Wu J. NO x Sensor Constructed from Conductive Metal-Organic Framework and Graphene for Airway Inflammation Screening. ACS Sens 2023; 8:2348-2358. [PMID: 37312238 DOI: 10.1021/acssensors.3c00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection of nitric oxide in human exhaled breath (EB) has received wide attention due to its close relationship with respiratory tract inflammation. Herein, a ppb-level NOx chemiresistive sensor was prepared by assembling graphene oxide (GO) with a conductive π-d conjugated metal-organic framework Co3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the presence of poly(dimethyldiallylammonium chloride) (PDDA). The construction of a gas sensor chip was achieved by drop-casting the GO/PDDA/Co3(HITP)2 composite onto ITO-PET interdigital electrodes, followed by in situ reduction of GO to reduced graphene oxide (rGO) in hydrazine hydrate vapor. Compared with bare rGO, the nanocomposite shows significantly improved sensitivity and selectivity for NOx among various gas analytes owing to its folded and porous structure as well as its numerous active sites. The limit of detection (LOD) for NO and NO2 can reach as low as 11.2 and 6.8 ppb, respectively, and the response/recovery time to 200 ppb NO is 24/41 s. These results indicate that rGO/PDDA/Co3(HITP)2 can achieve a sensitive and fast response toward NOx at room temperature (RT). Additionally, good repeatability and long-term stability were observed. Furthermore, the sensor shows improved humidity tolerance owing to the presence of hydrophobic benzene rings in Co3(HITP)2. To demonstrate its ability in EB detection, EB samples collected from healthy individuals were spiked with a certain amount of NO to simulate the EB of respiratory inflammatory patients. The sensor can successfully distinguish healthy people from the simulated patients. Furthermore, in real clinical sample detection, the sensor can further differentiate acute respiratory inflammatory patients from the chronic ones.
Collapse
Affiliation(s)
- Shiyuan Xu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuemei Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
4
|
Yang YL, Huang Z, Liu YY, Guo D, Zhang Q, Hong JM. Mechanism exploration of highly conductive Ni-metal organic frameworks/reduced graphene oxide heterostructure for electrocatalytic degradation of paracetamol: Functions of metal sites, organic ligands, and rGO basement. J Colloid Interface Sci 2023; 629:667-682. [PMID: 36183646 DOI: 10.1016/j.jcis.2022.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
The highly conductive Ni-metal-organic framework/reduced graphene oxide (Ni-MOG/rGO) heterostructure shows an excellent catalytic activity through the modification of active sites, considerably enabling the electron transfer between rGO and Ni-MOF. However, the detailed mechanisms, i.e., the functions of separate metal sites and organic ligands and electron transfer orientation between Ni-MOFs and rGO, remain to be discussed. Here, the electrocatalytic mechanism of Ni-MOF/rGO was experimentally analyzed on the basis of the density functional theory. The dominant active sites of radical and nonradical generation were determined. Findings indicated that radicals (O2•- and •OH) and nonradicals (1O2 and active chlorine) contributed to paracetamol (APAP) degradation. Moreover, metal sites (Ni) were favorable to generate O2•- and partly •OH to initiate the reaction. By contrast, organic frameworks in Ni-MOF and rGO basement favored to generate •OH and nonradicals (1O2 and active chlorine). In this case, N sites (in Ni-MOF), which seized electrons from Ni sites, acted as the primary bonding bridge to accelerate the electron transfer from rGO to Ni-MOF. This study provided essential information to decipher the mechanism of Ni-MOF/rGO heterostructure applicable to the electrocatalytic system.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| | - Zhi Huang
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Yan-Ying Liu
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Die Guo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China.
| | - Jun-Ming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| |
Collapse
|
5
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ghosh A, Shyamal S, Palui A, Manna RN, Mondal S, Jana M, Ghosh A, Bhaumik A. Photoelectrochemical Water Oxidation over Novel Semiconducting Zinc-Based Metal-Thiolate Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37699-37708. [PMID: 35960025 DOI: 10.1021/acsami.2c07737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing an efficient catalyst for a sustainable photoelectrochemical water oxidation reaction is very challenging in the context of renewable energy research. Here, we have introduced a new semiconducting porous zinc-thiolate framework via successful stitching of an "N" donor linker with a triazine-based tristhiolate secondary building unit in the overall architecture. The introduction of both linker and tristhiolate ligand synergistically modifies the architecture by making it a rigid, crystalline, three-dimensional, thermally stable, and porous framework. Our novel zinc-thiolate framework is used as an n-type semiconductor as revealed from the solid-state UV-vis DRS spectroscopic analysis, ac and dc conductivity analysis, and Mott-Schottky plot. This n-type semiconductor-based zinc-thiolate framework is utilized in the photoelectrochemical water oxidation reaction. It displayed a very high efficiency for a visible-light-driven oxygen evolution reaction (OER) in a KOH medium using standard Ag/AgCl as the reference electrode. The superiority of this material was further revealed from the low onset potential (0.822 mV vs RHE), high photocurrent density (0.204 mA cm-2), good stability, and high O2 evolution rate (77 μmol g-1 of oxygen evolution within 2 h), and a good efficiency (ABPE 0.42%, IPCE 29.6% and APCE 34.5%). Furthermore, the porosity in the overall framework seems to be a blessing to the photoelectrochemical performance due to better mass diffusion of the electrolyte. A detailed mechanism for the OER reaction was analyzed through density functional theory analysis suggesting the potential future of this Zn-thiolate framework for achieving a high efficiency in the sustainable water oxidation reaction.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Palui
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Aswini Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Gupta S, Tanaka H, Sato T, Ye S, Breedlove BK, Iguchi H, Takaishi S. Bromine Vapor Induced Continuous p- to n-Type Conversion of a Semiconductive Metal-Organic Framework Cu[Cu(pdt) 2]. Inorg Chem 2022; 61:4414-4420. [PMID: 35234465 DOI: 10.1021/acs.inorgchem.1c03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guest-promoted modulation of the electronic states in metal-organic frameworks (MOFs) has brought about a new field of interdisciplinary research, including host-guest chemistry and solid-state physics. Although there are dozens of studies on guest-promoted enhancement of the electrical conductivity properties, including stoichiometry, conductive carriers and structure-property relationships have been scarcely studied in detail. Herein, we studied the effects of continuous and controlled bromine vapor doping on structural, optical, thermoelectric, and semiconducting properties of Cu[Cu(pdt)2] (pdt = 2,3-pyrazinedithiolate) as a function of bromine stoichiometry. We demonstrated that the same material could act as both p- and n-type semiconductors by tuning the stoichiometry of Br doped in Brx@Cu[Cu(pdt)2], and a change in the charge-carrier type from holes in pristine MOF to electrons upon bromine vapor doping was observed. Bromine molecules acted as an oxidant, causing the selective oxidation of [CuII(pdt)2] in the host framework. In addition, a redox hopping pathway between the partially oxidized CuII/CuIII center contributed to the enhancement of the electrical conductivity of the MOF.
Collapse
Affiliation(s)
- Shraddha Gupta
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Haruki Tanaka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| |
Collapse
|