1
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
2
|
Hsu JH, Tang NT, Hsu TF, Lin SH, Fang CY, Huang YW, Yang H. Self-Assembly of Hemimyzon Formosanus-Inspired Crescent-Shaped Nanosucker Arrays for Reversible Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56203-56212. [PMID: 38009758 DOI: 10.1021/acsami.3c15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hemimyzon formosanus, a species of ray-finned fish, makes use of crescent-shaped abdominal suckers for adhering to irregular, rough, and slippery gravel in fast-flowing headwaters and minor tributaries. Bioinspired by the adhesion characteristics, two-dimensional non-close-packed colloidal crystals are self-assembled and serve as templates to pattern crescent-shaped shape memory polymer-based nanostructure arrays. By the manipulation of the configuration of nanosuckers through applying common solvent stimulations, the corresponding adhesion performances on glass, sandpaper, or even porcine kidney surfaces can be switched instantaneously and reversibly under ambient conditions. The biomimetic nanostructures indicate possible solutions to a variety of challenges, such as wound nursing, and so on.
Collapse
Affiliation(s)
- Jung-Hsuan Hsu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Nien-Ting Tang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Ting-Fang Hsu
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Cai-Yin Fang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Yun-Wen Huang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Zhao Y, He P, Yao J, Li M, Wang B, Han L, Huang Z, Guo C, Bai J, Xue F, Cong Y, Cai W, Chu PK, Chu C. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials 2023; 301:122237. [PMID: 37467596 DOI: 10.1016/j.biomaterials.2023.122237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Although biodegradable polymer coatings can impede corrosion of magnesium (Mg)-based orthopedic implants, they are prone to excessive degradation and accidental scratching in practice. Bone implant-related infection and limited osteointegration are other factors that adversely impact clinical application of Mg-based biomedical implants. Herein, a self-healing polymeric coating is constructed on the Mg alloy together with incorporation of a stimuli-responsive drug delivery nanoplatform by a spin-spray layer-by-layer (SSLbL) assembly technique. The nanocontainers are based on simvastatin (SIM)-encapsulated hollow mesoporous silica nanoparticles (S@HMSs) modified with polydopamine (PDA) and polycaprolactone diacrylate (PCL-DA) bilayer. Owing to the dynamic reversible reactions, the hybrid coating shows a fast, stable, and cyclical water-enabled self-healing capacity. The antibacterial assay indicates good bacteria-killing properties under near infrared (NIR) irradiation due to synergistic effects of hyperthermia, reactive oxygens species (ROS), and SIM leaching. In vitro results demonstrate that NIR laser irradiation promotes the cytocompatibility, osteogenesis, and angiogenesis. The coating facilitates alkaline phosphatase activity and expedites extracellular matrix mineralization as well as expression of osteogenesis-related genes. This study reveals a useful strategy to develop multifunctional coatings on bioabsorbable Mg alloys for orthopedic implants.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Linyuan Han
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, Southeast University, School of Medicine, Nanjing, 210002, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Wang J, Gao Q, Zhao F, Ju J. Repair mechanism and application of self-healing materials for food preservation. Crit Rev Food Sci Nutr 2023; 64:11113-11123. [PMID: 37427571 DOI: 10.1080/10408398.2023.2232877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The traditional packaging concept has reached its limits when it comes to ensuring the quality of food and extending its shelf life. Compared to traditional packaging materials, food packaging with self-healing function is becoming more and more popular. This is because they can automatically repair the damaged area, restore the original properties and prevent the decline of food quality and loss of nutrients. Materials based on various self-healing mechanisms have been developed and used on a laboratory scale in the form of coatings and films for food packaging. However, more efforts are needed for the commercial application of these new self-healing packaging materials. Understanding the self-healing mechanism of these packaging materials is very important for their commercial application. This article first discusses the self-healing mechanism of different packaging materials and compares the self-healing efficiency of self-healing materials under different conditions. Then, the application potential of self-healing coatings and films in the food industry is systematically analyzed. Finally, we give an outlook on the application of self-healing materials in the field of food packaging.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Qingchao Gao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Lai WF. Design and application of self-healable polymeric films and coatings for smart food packaging. NPJ Sci Food 2023; 7:11. [PMID: 36991042 DOI: 10.1038/s41538-023-00185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Smart packaging materials enable active control of parameters that potentially influence the quality of a packaged food product. One type of these that have attracted extensive interest is self-healable films and coatings, which show the elegant, autonomous crack repairing ability upon the presence of appropriate stimuli. They exhibit increased durability and effectively lengthen the usage lifespan of the package. Over the years, extensive efforts have been paid to the design and development of polymeric materials that show self-healing properties; however, till now most of the discussions focus on the design of self-healable hydrogels. Efforts devoted to delineating related advances in the context of polymeric films and coatings are scant, not to mention works reviewing the use of self-healable polymeric materials for smart food packaging. This article fills this gap by offering a review of not only the major strategies for fabrication of self-healable polymeric films and coatings but also the mechanisms of the self-healing process. It is hoped that this article cannot only provide a snapshot of the recent development of self-healable food packaging materials, but insights into the optimization and design of new polymeric films and coatings with self-healing properties can also be gained for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
6
|
Manabe K, Nakano M, Norikane Y. Green Superlubricity Enabled by Only One Water Droplet on Plant Oil-Infused Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14878-14888. [PMID: 34894693 DOI: 10.1021/acs.langmuir.1c02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase in energy loss due to friction and the use of large amounts of lubricants to improve it are major challenges we face from a global environmental perspective. Pitcher-plant-inspired liquid-infused surfaces (LISs) are emerging super-repellent surfaces against liquids. However, their coefficient of friction (CoF) against solids is higher than that of conventional lubricant surfaces. Herein, we demonstrate superlubricity with a single water droplet placed on a LIS holding oleic acid, a component of plant oil. When a water droplet is placed on the fluid layer, the CoF under reciprocating and rotating friction is 0.012 and 0.0098, respectively. A force in the direction opposite to the loading due to the Laplace pressure on the droplet and an autonomous positional movement of the water accompanied by the optimization of surface energy maintain the fluid-lubrication state and prevent direct contact between the surface and the friction material, resulting in a decrease of the dependence of the CoF on the friction velocity. The key technology here will not only present a novel strategy for preparing LISs against solids but also serve as a step toward a sustainable green strategy for friction reduction and lubrication, which would greatly reduce energy loss and environmental degradation.
Collapse
Affiliation(s)
- Kengo Manabe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| | - Miki Nakano
- Advanced Manufacturing Research Institute (AMRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|