1
|
Guo T, Sun H, Liu C, Yang F, Hou D, Zheng Y, Gao H, Shi R, He X, Lin X. Twisted Structure Induced Solid-State Fluorescence and Room-Temperature Phosphorescence from Furan-Based Carbon Dots. Inorg Chem 2024; 63:19939-19948. [PMID: 39385452 DOI: 10.1021/acs.inorgchem.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Boron doping can effectively induce solid-state fluorescence (SSF) in carbon dots (CDs); however, research on the intrinsic mechanism underlying this phenomenon is lacking. Herein, a design strategy for boron-doped furan-based CDs is proposed, CDs with aggregation-induced emission (AIE) properties are synthesized, and the mechanism by which boron atom dopants induces SSF and room-temperature phosphorescence (RTP) is elucidated. The morphology and structural characterization of the CDs indicate that boron doping leads to structural twisting of the CDs. The AIE phenomenon of CDs arises from the inhibition of the twisted structure motions and a reduction in the nonradiative relaxation rate during the aggregation process. In addition, CDs with twisted structures exhibit a smaller overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), effectively reducing the singlet-triplet splitting energy (ΔEST). CDs embedded in microcrystalline cellulose (MCC) exhibit green RTP because the nonradiative transitions are suppressed, and the excited triplet species remain stable. For the first time, this study reveals the structure-activity relationship between the twisted structure and optical properties of CDs, providing a new approach for the preparation of solid-state light-emitting CDs.
Collapse
Affiliation(s)
- Tingxuan Guo
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Hui Gao
- Yunnan University of Chinese Medicine, University City of Chenggong, 1076, Yuhua Road, Kunming, Yunnan Province 650500, China
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| |
Collapse
|
2
|
Madhu M, Santhoshkumar S, Hsiao CW, Tseng WL, Kuo SW, Mohamed MG. Selective and Sensitive Detection of Fe 3+ Ions Using a Red-Emissive Fluorescent Probe Based on Triphenylamine and Perylene-Linked Conjugated Microporous Polymer. Macromol Rapid Commun 2024; 45:e2400263. [PMID: 38878267 DOI: 10.1002/marc.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Indexed: 06/27/2024]
Abstract
The Expansion of modern industry underscores the urgent need to address heavy metal pollution, which is a threat to human-health and environment. Efforts are underwent to develop precise technologies for detecting heavy metal ions (M+-ion). One promising approach involves the use of Conjugated Microporous Polymers (CMPs) modified with Triphenylamine (TPA) anderylene (Peryl), known as TPA-Peryl-CMP, which emits strong refluorescence. Various analytical techniques, such as Brunauer-Emmett-Teller analysis, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA), are utilized to characterize the synthesized TPA-Peryl-CMP and understand its functional properties. In addition to its remarkable fluorescence behavior, TPA-Peryl-CMP shows promise as a sensor for Fe3+ ions using a turn-off strategy. Due to its exceptional stability and robust π-electron system, this platform demonstrates remarkable sensitivity and selectivity, significantly improving detection capabilities for specific analytes. Detailed procedures related to the mechanism for detecting Fe3+ ions are outlined for sensing Fe3+ ions, revealing a notably strong linear correlation within the concentration range of 0-3 µM, with a correlation coefficient of 0.9936 and the Limit of detection (LOD) 20 nM. It is anticipated that development of such a kind of TPA-Peryl-CMP will observe broader applications in detecting various analytes related to environmental and biological systems.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ching-Wen Hsiao
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Wei Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
3
|
Li Z. Facile Synthesis of B/P Co-Doping Multicolor Emissive Carbon Dots Derived from Phenylenediamine Isomers and Their Application in Anticounterfeiting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:813. [PMID: 38786770 PMCID: PMC11123944 DOI: 10.3390/nano14100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Carbon dots (CDs) possess a considerable number of beneficial features for latent applications in biotargeted drugs, electronic transistors, and encrypted information. The synthesis of fluorescent carbon dots has become a trend in contemporary research, especially in the field of controllable multicolor fluorescent carbon dots. In this study, an elementary one-step hydrothermal method was employed to synthesize the multicolor fluorescent carbon dots by co-doping unique phenylenediamine isomers (o-PD, m-PD, and p-PD) with B and P elements, which under 365 nm UV light exhibited signs of lavender-color, grass-color, and tangerine-color fluorescence, respectively. Further investigations reveal the distinctness in the polymerization, surface-specific functional groups, and graphite N content of the multicolor CDs, which may be the chief factor regarding the different optical behaviors of the multicolor CDs. This new work offers a route for the exploration of multicolor CDs using B/P co-doping and suggests great potential in the field of optical materials, important information encryption, and commercial anticounterfeiting labels.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Zhang L, Bian Z, Hu G. A carbon dot-based time-dependent color-changing room temperature phosphorescent material with facile synthesis. LUMINESCENCE 2024; 39:e4779. [PMID: 38769873 DOI: 10.1002/bio.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Carbon dots have attracted widespread attention due to their excellent optical properties and so on and are therefore used in various fields such as anti-counterfeiting. There are many reports on carbon dot-based room-temperature phosphorescent materials, but there are still fewer reports on carbon dot-based room-temperature phosphorescent materials with time-dependent color-changing properties. In this work, a time-dependent color-changing carbon dot-based room-temperature phosphorescent material with the ability to change from green to blue was successfully prepared by a simple one-pot heating method using hydroxyurea as the only raw material. In this process, hydroxyurea is used as both a carbon and nitrogen source, and in the process of material formation, hydroxyurea also partially forms cyanuric acid as a matrix to make the carbon dots uniformly dispersed in it. By blending the ratio of the dual emission centers of the carbon dots themselves, the final effect of time-dependent color-changing is achieved by taking advantage of the intensity changes and color differences of each emission center. The present work provides new ideas for the preparation of time-dependent color-changing carbon dot-based room-temperature phosphorescent materials.
Collapse
Affiliation(s)
- Le Zhang
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| | - Zhentao Bian
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| | - Guangzhou Hu
- Chemical Technology, Institute of Chemical Technology, China University of Mining & Technology, Xuzhou, China
| |
Collapse
|
5
|
Li Q, Zhao H, Yang D, Meng S, Gu H, Xiao C, Li Y, Cheng D, Qu S, Zeng H, Zhu X, Tan J, Ding J. Direct in Situ Fabrication of Multicolor Afterglow Carbon Dot Patterns with Transparent and Traceless Features via Laser Direct Writing. NANO LETTERS 2024; 24:3028-3035. [PMID: 38411557 DOI: 10.1021/acs.nanolett.3c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Multicolor afterglow patterns with transparent and traceless features are important for the exploration of new functionalities and applications. Herein, we report a direct in situ patterning technique for fabricating afterglow carbon dots (CDs) based on laser direct writing (LDW) for the first time. We explore a facile step-scanning method that reduces the heat-affected zone and avoids uneven heating, thus producing a fine-resolution afterglow CD pattern with a minimum line width of 80 μm. Unlike previous LDW-induced luminescence patterns, the patterned CD films are traceless and transparent, which is mainly attributed to a uniform heat distribution and gentle temperature rise process. Interestingly, by regulating the laser parameters and CD precursors, an increased carbonization and oxidation degree of CDs could be obtained, thus enabling time-dependent, tunable afterglow colors from blue to red. In addition, we demonstrate their potential applications in the in situ fabrication of flexible and stretchable optoelectronics.
Collapse
Affiliation(s)
- Qijun Li
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Hongjia Zhao
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Daiqi Yang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shuai Meng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hailing Gu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chi Xiao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yi Li
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dengke Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, People's Republic of China
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xingwang Zhu
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jing Tan
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jianning Ding
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
6
|
Jin X, Zhao H, Bai H, Ding L, Chen W. Facile preparation strategy of novel B 2O 3-modified carbon dots with 1.99 s ultra-long Room-Temperature phosphorescence for multidimensional encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123473. [PMID: 37857077 DOI: 10.1016/j.saa.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Facile synthesis of Ultralong room-temperature phosphorescence (URTP) with super stability and long-afterglow are of great significance, but hard to achieve. Herein, a brilliant gram-scale and solvent-free pyrolysis treatment strategy has been developed to prepare high-performance URTP carbon dots (CDs) by regulating different temperature (250-500 °C). The optimized CDs (CD-400) showed room-temperature phosphorescence 1.99 s and lasting over 22 s to naked eyes, which is superior to most of the reported URTP CDs. Owing to the stabilization effects of the modified B2O3 layer on the surface, the homogenous distribution of CD-400 with the narrow diameter of 1.44 nm was constructed, displaying a superb stability through hydrogen-bond network. In addition, the doping atoms (N, O) greatly enhanced the n-π* transitions and stabilized triplet excitons radiative transitions, facilitating the effective intersystem crossing (ISC) and the RTP emissions. More importantly, the B2O3-modified CDs were successfully applied in the multi-level information encryption (time-resolved RTP performance) and fingerprint identification (bifurcation, whorl and termination details).
Collapse
Affiliation(s)
- Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China; Yulin Boyi-Jingking Research Institute of Industrial Technology Development Research, Yulin, Shaanxi Province 719054, PR China.
| | - Huaqi Zhao
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Liu Ding
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China.
| |
Collapse
|
7
|
Lu F, Xu X, Zhu X, Shen L, Wan W, Hu M. Based on FRET to construct color-tunable ultralong lifetime room temperature phosphorescent carbon dots in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123404. [PMID: 37722162 DOI: 10.1016/j.saa.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Room temperature phosphorescent (RTP) Carbon Dots have been capturing increasing attention in recent years, while building a general method to adjust the emission color of RTP carbon dots is still a big challenge. Herein we report a simple method that combine the carbon nanodots and dyes (R6G and DCF) in SiO2 nanosphere to get a series of multicolor RTP nanodots (CD@SiO2@dye) with long lifetime in aqueous solution. Leverage on chitosan quaternary ammonium as matrix and diethylenetriamine as N-doping resource to form a cross-linked skeleton as a luminescent center (namely CD), and a rigid network is formed by silica encapsulation (CD@SiO2) to restrict the non-radiative transition process to generate the phosphorescence. The CD-based composites, with 1.10 s green (503 nm) phosphorescence emission, serve as activator to stimulate the corresponding luminescence of organic dyes. Then, based on Förster resonance energy transfer (FRET) process from CDs (as donor) to organic dyes (as acceptor) under UV excitation, the CD@SiO2@R6G emit ultra-long lifetime (1.13 s) orange-yellow (570 nm) afterglow, and CD@SiO2@DCF emit ultra-long lifetime (1.20 s) yellow-green afterglow (530 nm). Furthermore, it also achieves RTP colors control when the ratio of CDs and the dyes changes, the ratio of green emission and dye's emission activated by CDs will gradually change as well. These kinds of materials keep the inherent advantages of low toxicity and luminous stability, and achieve adjustable RTP color in aqueous solution. Our research provides a strategy to synthesize water-soluble long-life RTP CDs with adjustable color and lifetime.
Collapse
Affiliation(s)
- Feng Lu
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinhuan Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingdong Zhu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Linxin Shen
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weizheng Wan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Hu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
8
|
Zhang H, Guo X, Jian K, Fu L, Zhao X. Rapid Preparation of Long-Wavelength Emissive Carbon Dots for Information Encryption Using the Microwave-Assisted Method. Inorg Chem 2023; 62:13847-13856. [PMID: 37583357 DOI: 10.1021/acs.inorgchem.3c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The synthesis of long-wavelength emission fluorescent carbon dots is not common, and it is even more difficult to quickly synthesize within 10 min. In this experiment, yellow, orange, and red B, N codoped fluorescent carbon dots were successfully synthesized using a microwave-assisted method with o-phenylenediamine as the carbon-nitrogen source, boric acid as the boron source, and potassium chloride as the catalyst in just 7 min. Based on the different contents of B, N element doping, there are differences in their surface structures, resulting in differences in the luminescence properties of the synthesized carbon dots. Long-wavelength carbon dots can avoid interference from the blue fluorescence of filter papers and have a clearer display in information encryption. Therefore, three types of carbon dots were mixed with PVP to produce fluorescent inks, and anticounterfeiting and encryption patterns were designed on the filter paper, displaying different fluorescence information under sunlight and UV light. In addition, the rich fluorescent colors were combined ingeniously to enable secondary encryption of information in the form of binary codes that increase the difficulty of decoding. These indicate that the three synthesized long-wavelength carbon dots have good application prospects in information encryption.
Collapse
Affiliation(s)
- Hongmei Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangjun Guo
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Ke Jian
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Liming Fu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Liu H, Zhang C, Wang C, Fan K, Zhang Y, Fang L, Li L, Ren C, Yin ZZ, Lü Z. A highly selective and sensitive sensor for promethazine based on molecularly imprinted interface coated Au/Sn bimetal nanoclusters functionalized acupuncture needle microelectrode. Anal Chim Acta 2023; 1269:341395. [PMID: 37290856 DOI: 10.1016/j.aca.2023.341395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Promethazine (PMZ) is an effective antihistamine that is used as a nerve tranquilizer to treat mental disorders. However, drug abuse causes harm to the human body and also pollutes the environment to a certain extent. Therefore, it is crucial to develop a highly selective and sensitive biosensor for PMZ determination. An acupuncture needle (AN) was used as an electrode in 2015, and further research on the electrode's essence in electrochemistry is needed. In this work, a sensor based on a surface imprinted film coordinated Au/Sn biometal was first fabricated on AN via electrochemistry. The obtained cavities showed complementary and suitable sites for "N atom" electron transfer through the phenyl ring structure in promethazine, which is rigorous for the configuration near the interface. Under the optimal conditions, MIP/Au/Sn/ANE exhibits a good linear relationship in the range of 0.5 μM-500 μM, and the detection limit (LOD) is 0.14 μM (S/N = 3). The sensor exhibits good repeatability, stability, and selectivity and can be successfully used to analyze and detect PMZ in human serum and environmental water. The findings are scientifically significant for AN electrochemistry and the sensors have potential for in vivo medicamentosus monitoring in the future.
Collapse
Affiliation(s)
- Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cairui Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chenwei Wang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kai Fan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuqing Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chaoxiang Ren
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Science and Engineering, Jiaxiing University, Jiaxing, 314001, China.
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| |
Collapse
|
10
|
Zhou S, Wang F, Feng N, Xu A, Sun X, Zhou J, Li H. Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301240. [PMID: 37086135 DOI: 10.1002/smll.202301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Room temperature phosphorescence (RTP) materials have drawn considerable attention by virtue of their outstanding features. Compared with organometallic complexes and pure organic compounds, carbon dots (CDs) have emerged as a new type of RTP materials, which show great advantages, such as moderate reaction condition, low toxicity, low cost, and tunable optical properties. In this review, the important progress made in RTP CDs is summarized, with an emphasis on the latest developments. The synthetic strategies of RTP CDs will be comprehensively summarized, followed by detailed introduction of their performance regulation and potential applications in anti-counterfeiting, information encryption, sensing, light-emitting diodes, and biomedicine. Finally, the remaining major challenges for RTP CDs are discussed and new opportunities in the future are proposed.
Collapse
Affiliation(s)
- Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aoxue Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Wang K, Qu L, Yang C. Long-Lived Dynamic Room Temperature Phosphorescence from Carbon Dots Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206429. [PMID: 36609989 DOI: 10.1002/smll.202206429] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a type of room temperature phosphorescence (RTP) material, carbon dots (CDs) always show short lifetime and low phosphorescence efficiency. To counter these disadvantages, several strategies, such as embedding in rigid matrix, introducing of heteroatom, crosslink-enhanced emission, etc., are well developed. Consequently, lots of CDs-based RTP materials are obtained. Doping of CDs into various matrix is the dominant method for preparation of long-lived CDs-based RTP materials so far. The desired CDs@matrix composites always display outstanding RTP performances. Meanwhile, matrix-free CDs and carbonized polymer dots-based RTP materials are also widely developed. Amounts of CDs possessing ultra-long lived, multiple colored, and dynamic RTP emission are successfully obtained. Herein, the recent progress achieved in CDs-based RTP materials as well as the corresponding efficient strategies and emission mechanisms are summarized and reviewed in detail. Due to CDs-based RTP materials possess excellent chemical stability, photostability and low biological toxicity, they exhibit great application potential in the fields of anti-counterfeiting, data encryption, and biological monitoring. The application of the CDs-based RTP materials is also introduced in this review. As a promising functional material, development of long wavelength RTP emitting CDs with long lifetime is still challengeable, especially for the red and near-infrared emitting RTP materials.
Collapse
Affiliation(s)
- Kaiti Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
12
|
Shi J, Zhou Y, Ning J, Hu G, Zhang Q, Hou Y, Zhou Y. Prepared carbon dots from wheat straw for detection of Cu 2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121597. [PMID: 35820342 DOI: 10.1016/j.saa.2022.121597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The green synthesis of fluorescent carbon dots from biomass is critical for their sustainable application. Herein, using wheat straw as a single precursor, carbon dots (CDs) were prepared through a one-step carbonization process, and the obtained CDs have intense blue luminescence and excitation-independent photoluminescent behavior. The solution of CDs shows good biocompatibility, and low cytotoxicity successfully used as hopeful bioimaging and biosensing probe for Cu2+ in HepG2 cells and zebrafish. Based on CDs, boron-doped carbon dots with IPA shells (CDs@IPA) can be obtained by doping boron element and isophthalic acid (IPA) coating. CDs@IPA irradiated with different wavelength ultraviolet lamps shows different solid fluorescence, while turning off the ultraviolet lamp can produce green visible room temperature phosphorescence (RTP) to the naked eyes for 5 s. The two kinds of wheat straw-based carbon dots have bifunctional luminescence properties and can be used to detect Cu2+ and serve as RTP anti-counterfeiting signs to ensure information security.
Collapse
Affiliation(s)
- Jiahui Shi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yunhao Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qingyou Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yabin Hou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
H2O2-assisted detection of melamine using fluorescent probe based on corn cob carbon dots-Ionic Liquid-Silver Nanoparticles. Food Chem 2022; 403:134415. [DOI: 10.1016/j.foodchem.2022.134415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
|
14
|
Wang C, Qu L, Chen X, Zhou Q, Yang Y, Zheng Y, Zheng X, Gao L, Hao J, Zhu L, Pi B, Yang C. Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long-Lived Room-Temperature Phosphorescence in Aqueous Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204415. [PMID: 35731029 DOI: 10.1002/adma.202204415] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti-counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long-lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long-lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright-green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water.
Collapse
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaohong Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xian Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jinqiu Hao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyun Zhu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingxue Pi
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Facile Synthesis of Multi-Emission Nitrogen/Boron Co-Doped Carbon Dots from Lignin for Anti-Counterfeiting Printing. Polymers (Basel) 2022; 14:polym14142779. [PMID: 35890555 PMCID: PMC9316793 DOI: 10.3390/polym14142779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
The transformation of lignin with natural aromatic structure into value-added carbon dots (CDs) achieves a win-win situation for low-cost production of novel nanomaterials and reasonable disposal of biomass waste. However, it remains challenging to produce multi-emission CDs from biomass for advanced applications. Herein, a green and facile approach to preparing multi-emission CDs from alkali lignin via N and B co-doping is developed. The obtained N and B co-doped CDs (NB-CDs) show multi-emission fluorescence centers at 346, 428 and 514 nm under different excitations. As the doping amount of N and B increases, the fluorescence emission band gradually shifts to 428 and 514 nm, while that at 346 nm decreases. The fluorescence mechanism is explored through the research of the structure, composition and optical performance of NB-CDs in combination with density functional theory (DFT) calculations. It demonstrates that the effect of doping with B-containing functional groups on the fluorescence emission behavior is multivariate, which may be the crucial contribution to the unique multi-emission fluorescence of CDs. The multi-emission NB-CDs with prominent stability are applied for multilevel anti-counterfeiting printing. It provides a promising direction for the sustainable and advanced application of biomass-derived CDs, and the theoretical results highlight a new insight into the deep understanding of the multi-emission fluorescence mechanism.
Collapse
|
16
|
Cong S, Jiang Z, Zhang R, Lv H, Guo J, Zhang L, Lu X. Polymer Carbon Nanodots: A Novel Electrochemiluminophore for Dual Mode Detection of Ferric Ions. Anal Chem 2022; 94:6695-6702. [PMID: 35483019 DOI: 10.1021/acs.analchem.1c05408] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of simple and effective dual-mode analytical methods plays crucial regulatory roles in the discrimination of relevant target species, because of their built-in cross reference correction and high accuracy. In this work, a novel polymer carbon nanodots (PCNDs) prepared from a facile one-pot hydrothermal procedure using readily available l-tryptophan and l-phenylalanine as precursors, showed excellent aqueous solubility and blue fluorescence property with a high quantum yield of 29%. Moreover, the PCNDs was demonstrated to be a robust luminophore with electrochemiluminescence (ECL) efficiency of 43% was achieved by using K2S2O8 as a coreactant. The spooling ECL spectroscopy was employed to take insight into excited states responsible for the potential-dependent ECL emissions. Most importantly, when introduced into construction of the fluorescence and ECL dual mode sensing platform, for the first time, the PCNDs displayed prominent performance for the detection of ferric ions (Fe3+). The ferric ions could be quantified ranging from micromolar to millimolar with a detection limit of 0.22 and 5.3 μM, respectively. Such a dual-functional sensing platform also exhibits excellent selectivity, reproducibility and stability. Results from this work indicate that PCNDs showing great promise as a bright luminophore for the fabrication of low-cost, high-performance dual-signal readout platforms for ferric ions determination.
Collapse
Affiliation(s)
- Shanshan Cong
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ziyu Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiping Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
17
|
Zhang X, Castellano FN. Thermally Activated Bright-State Delayed Blue Photoluminescence from InP Quantum Dots. J Phys Chem Lett 2022; 13:3706-3711. [PMID: 35439008 DOI: 10.1021/acs.jpclett.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermally activated delayed photoluminescence (TADPL) generated from organic chromophore-functionalized quantum dots (QDs) is potentially beneficial for persistent light generation, QD-based PL sensors, and photochemical synthesis. While previous research demonstrated that naphthoic acid-functionalized InP QDs can be employed as low-toxicity, blue-emissive TADPL materials, the electron trap states inherent in these nanocrystals inhibited the observation of TADPL emerging from the higher-lying bright states. Here, we address this challenge by employing the heterocyclic aromatic compound 8-quinolinecarboxylic acid (QCA), whose triplet energy is strategically positioned to bypass the electron trap states in InP QDs. Transient absorption and photoluminescence spectroscopies revealed the generation of bright-state TADPL from QCA-functionalized InP QDs resulting from a nearly quantitative Dexter-like triplet-triplet energy transfer (TTET) from photoexcited InP QDs to surface-anchored QCA chromophores followed by reverse TTET from these bound molecules to the InP QDs. This modification resulted in a 119-fold increase in the average PL intensity decay time with respect to the as-synthesized InP QDs.
Collapse
Affiliation(s)
- Xingao Zhang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
18
|
Jiang K, Wang Y, Lin C, Zheng L, Du J, Zhuang Y, Xie R, Li Z, Lin H. Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:80. [PMID: 35351847 PMCID: PMC8964705 DOI: 10.1038/s41377-022-00767-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 05/04/2023]
Abstract
The first carbon dot (CD)-based organic long persistent luminescence (OLPL) system exhibiting more than 1 h of duration was developed. In contrast to the established OLPL systems, herein, the reported CDs-based system (named m-CDs@CA) can be facilely and effectively fabricated using a household microwave oven, and more impressively, its LPL can be observed under ambient conditions and even in aqueous media. XRD and TEM characterizations, afterglow decay, time-resolved spectroscopy, and ESR analysis were performed, showing the successful composition of CDs and CA, the formation of exciplexes and long-lived charged-separated states. Further studies suggest that the production of covalent bonds between CA and CDs plays pivotal roles in activating LPL and preventing its quenching from oxygen and water. To the best of our knowledge, this is a very rare example of an OLPL system that exhibits hour-level afterglow under ambient conditions. Finally, applications of m-CDs@CA in glow-in-the-dark paints for emergency signs and multicolored luminous pearls were preliminarily demonstrated. This work may provide new insights for the development of rare-earth-free and robust OLPL materials.
Collapse
Affiliation(s)
- Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China.
| | - Yuci Wang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Cunjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Licheng Zheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yixi Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Rongjun Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
19
|
Zhang F, Liang J, Liu Y, Zhou Q, Hong Y, Chen X, Tan K. A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120753. [PMID: 34952440 DOI: 10.1016/j.saa.2021.120753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) are two typical perfluorinated compounds (PFCs) that poss potential ecological toxicity. In this work, a fluorescence and resonance light scattering (RLS) dual-readout strategy for the detection of PFCs at picomole level based on the water-soluble CdTe quantum dots (CdTe QDs) has been proposed. It is found that the CdTe QDs exhibit a quenching in the presence of PFCs and thus serve as useful probes for PFCs. The linear ranges are 0.032-10.0 nM with a limit of detection(LOD) of 32.02 pM for PFOA and 0.044-15.0 nM with a LOD of 43.96 pM for PFOS, respectively. Meanwhile, PFCs can form complexes with CdTe QDs in acid medium, resulting in remarkable RLS signals. The enhanced RLS intensities are in proportion to the concentrations of PFOA and PFOS, respectively. And the linear ranges are 0.048-5.0 nM with a LOD of 47.78 pM for PFOA, and 0.057-5.0 nM with a LOD of 56.72 pM for PFOS, respectively. This dual-mode detection increases the reliability of the measurement. The proposed method is simple, sensitive and cost-effective, with potential applications in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; College of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
| | - Jiaman Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Ziyang food and drug inspection and Testing Center, Ziyang 641399, China
| | - Yang Liu
- Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, United States
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yushuang Hong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xianping Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Zhu L, Shen D, Hong Luo K. Triple-emission nitrogen and boron co-doped carbon quantum dots from lignin: Highly fluorescent sensing platform for detection of hexavalent chromium ions. J Colloid Interface Sci 2022; 617:557-567. [PMID: 35303639 DOI: 10.1016/j.jcis.2022.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
Considering that hexavalent chromium ions (Cr6+) with high toxicity poses a huge threat to human health and the ecological environment, constructing a rapid and accurate sensing platform is of great significance in detecting the toxic substance. The novel nitrogen and boron co-doped carbon quantum dots (N, B-CQDs) from lignin are synthesized as fluorescent sensors for the detection of Cr6+. The synthetic processes involve the acid hydrolysis step followed by the hydrothermal treatment step. Lignin is firstly depolymerized by cleaving ether bonds in the acidolysis, and N, B-CQDs are consequently formed by the aromatic re-fusion of lignin nanoparticles in the hydrothermal process. The lignin-derived N, B-CQDs show triple emission of purple, blue and green fluorescence under the excitation of 300, 330, and 490 nm, respectively. The triple-emission N, B-CQDs are applied for the triple-channel detection of Cr6+, which exhibit highly sensitive and selective fluorescence quenching for Cr6+ with good linearity (R2 ≤ 0.996) and very low limit of detection as 0.054, 0.049, and 0.077 μM under the excitation of 300, 330 and 490 nm, respectively. The utilization of renewable lignin as CQDs-based fluorescent sensors opens a new avenue for the rapid and accurate detection of Cr6+ through a multichannel sensing platform.
Collapse
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Kai Hong Luo
- Department of Mechanical Engineering, University College London, London WC1E7JE, UK
| |
Collapse
|
21
|
Liao J, Yao Y, Lee CH, Wu Y, Li P. In Vivo Biodistribution, Clearance, and Biocompatibility of Multiple Carbon Dots Containing Nanoparticles for Biomedical Application. Pharmaceutics 2021; 13:pharmaceutics13111872. [PMID: 34834287 PMCID: PMC8623098 DOI: 10.3390/pharmaceutics13111872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Current research on the use of carbon dots for various biological systems mainly focuses on the single carbon dots, while particles that contain multiple carbon dots have scarcely been investigated. Here, we assessed multiple carbon dots-crosslinked polyethyleneimine nanoparticles (CDs@PEI) for their in vivo biodistribution, clearance, biocompatibility, and cellular uptake. The in vivo studies demonstrate three unique features of the CDs@PEI nanoparticles: (1) the nanoparticles possess tumor-targeting ability with steady and prolonged retention time in the tumor region. (2) The nanoparticles show hepatobiliary excretion and are clear from the intestine in feces. (3) The nanoparticles have much better biocompatibility than the polyethyleneimine passivated single carbon dots (PEI-CD). We also found that pegylated CDs@PEI nanoparticles can be effectively taken up by the cells, which the confocal laser scanning microscope can image under different excitation wavelengths (at 405, 488, and 800 nm). These prior studies provide invaluable information and new opportunities for this new type of intrinsic photoluminescence nanoparticles in carbon dot-based biomedical applications.
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041, China; (J.L.); (Y.W.)
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Yuan Yao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Cheng-Hao Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041, China; (J.L.); (Y.W.)
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (Y.Y.); (C.-H.L.)
- Correspondence:
| |
Collapse
|